A Semi-Analytical Model to Predict Infusion Time and Reinforcement Thickness in VARTM and SCRIMP Processes

In liquid composite molding processes, such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM), the resin is drawn through fiber preforms in a closed mold by an induced pressure gradient. Unlike the RTM, where a rigid mold is employed, in VARTM, a flexible bag is comm...

Full description

Bibliographic Details
Main Authors: Felice Rubino, Pierpaolo Carlone
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Polymers
Subjects:
Online Access:http://www.mdpi.com/2073-4360/11/1/20
Description
Summary:In liquid composite molding processes, such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM), the resin is drawn through fiber preforms in a closed mold by an induced pressure gradient. Unlike the RTM, where a rigid mold is employed, in VARTM, a flexible bag is commonly used as the upper-half mold. In this case, fabric deformation can take place during the impregnation process as the resin pressure inside the preform changes, resulting in continuous variations of reinforcement thickness, porosity, and permeability. The proper approach to simulate the resin flow, therefore, requires coupling deformation and pressure field making the process modeling more complex and computationally demanding. The present work proposes an efficient methodology to add the effects of the preform compaction on the resin flow when a deformable porous media is considered. The developed methodology was also applied in the case of Seeman’s Composite Resin Infusion Molding Process (SCRIMP). Numerical outcomes highlighted that preform compaction significantly affects the resin flow and the filling time. In particular, the more compliant the preform, the more time is required to complete the impregnation. On the other hand, in the case of SCRIMP, the results pointed out that the resin flow is mainly ruled by the high permeability network.
ISSN:2073-4360