Automated Cardiac Drug Infusion System Using Adaptive Fuzzy Neural Networks Controller

This paper presents a fuzzy neural network (FNN) control system to automatically manage the hemodynamic variables of patients with hypertension and congestive heart failure (CHF) via simultaneous infusion of cardiac drugs such as vasodilators and inotropic agents. The developed system includes two F...

Full description

Bibliographic Details
Main Authors: Mohamed E. Karar, Mohamed A. El-Brawany
Format: Article
Language:English
Published: SAGE Publishing 2011-01-01
Series:Biomedical Engineering and Computational Biology
Online Access:https://doi.org/10.4137/BECB.S6495
Description
Summary:This paper presents a fuzzy neural network (FNN) control system to automatically manage the hemodynamic variables of patients with hypertension and congestive heart failure (CHF) via simultaneous infusion of cardiac drugs such as vasodilators and inotropic agents. The developed system includes two FNN sub-controllers for regulating cardiac output (CO) and mean arterial pressure (MAP) by cardiac drugs, considering interactive pharmacological effects. The adaptive FNN controller was tested and evaluated on a cardiovascular model. Six short-term therapy conditions of hypertension and CHF are presented under different sensitivities of a vasodilator drug. The results of the automated system showed that root mean square errors were ≤ 5.56 mmHg and ≤ 0.22 L min -1 for regulating MAP and CO, respectively, providing short settling time responses of MAP (≤ 10.9 min) and CO (≤ 8.22 min) in all therapy conditions. The proposed FNN control scheme can significantly improve the performance of cardiac drug infusion System.
ISSN:1179-5972