Summary: | Khaled Z Alawneh,1 Liqaa A Raffee,2 Musa Ahmed Mohammed Alshehabat,3 Hazem Haddad,4 Saied A Jaradat5 1Department of Diagnostic Radiology and Nuclear Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan; 2Department of Accident and Emergency Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan; 3Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan; 4Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, Jordan; 5Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid, 22110, JordanCorrespondence: Liqaa A RaffeeDepartment of Accident and Emergency Medicine, Faculty of Medicine, Jordan University of Science and Technology, Irbid, JordanEmail laraffee5@just.edu.joPurpose: Ischemic stroke of the brain is still considered one of the most common causes of disability and death in developed and developing countries in human beings despite advances in medicine and technology. This study was conducted to characterize and profile tens of induced biomarkers (microRNAs) after experimentally inducing regional ischemic stroke of the brain by occluding the middle cerebral artery under fluoroscopic guidance using an autologous blood clot.Patient and Methods: A total of six healthy dogs were recruited for this study. The microRNAs were profiled in the blood and urine before and after occluding the middle cerebral artery using genetic techniques.Results: The very highly expressed genes were comprised within cluster A, followed by cluster D in both 24 and 48-hour brain samples. Clusters B and C revealed down-regulated genes, while miRNAs remained up-regulated in the 24-hour samples merely in cluster F. Upregulated genes at 48 hours of reperfusion were included in cluster E. On the other hand, changes were observed after a day on the cluster G genes. Exclusive upregulation was notified after 2 days due to the changes in mIR-138. The normalized gene expression in the test sample is witnessed through Fold-Change, which divides the control sample’s normalized gene expression. Moreover, fold-change has emerged as a significant approach for representing fold-regulation.Conclusion: The microRNAs expression in blood and urine may have a potential role in the diagnosis, prognosis, and assessment of therapy associated with cerebral artery occlusion under fluoroscopic guidance.Keywords: dogs, fluoroscopic induced ischemic brain, microRNAs, middle cerebral artery stroke
|