Summary: | Using the discrete fractional calculus, a novel discrete fractional-order food chain model for the case of strong pressure on preys map is proposed. Dynamical behaviors of the model involving stability analysis of its equilibrium points, bifurcation diagrams and phase portraits are investigated. It is demonstrated that the model can exhibit a variety of dynamical behaviors including stable steady states, periodic and quasiperiodic dynamics. Then, a hybrid encryption scheme based on chaotic behavior of the model along with elliptic curve key exchange scheme is proposed for colored plain images. The hybrid scheme combines the characteristics of noise-like chaotic dynamics of the map, including high sensitivity to values of parameters, with the advantages of reliable elliptic curves-based encryption systems. Security analysis assures the efficiency of the proposed algorithm and validates its robustness and efficiency against possible types of attacks.
|