Necessary Condition for an Euler-Lagrange Equation on Time Scales

We prove a necessary condition for a dynamic integrodifferential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus are obtained as particular cases. An example of a second order dynamic equation, which is not an Euler-Lagrange equation on an...

Full description

Bibliographic Details
Main Authors: Monika Dryl, Delfim F. M. Torres
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2014/631281
id doaj-457f5312ce30497faf28efad71dcff06
record_format Article
spelling doaj-457f5312ce30497faf28efad71dcff062020-11-24T22:01:59ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092014-01-01201410.1155/2014/631281631281Necessary Condition for an Euler-Lagrange Equation on Time ScalesMonika Dryl0Delfim F. M. Torres1Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, PortugalCenter for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, PortugalWe prove a necessary condition for a dynamic integrodifferential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus are obtained as particular cases. An example of a second order dynamic equation, which is not an Euler-Lagrange equation on an arbitrary time scale, is given.http://dx.doi.org/10.1155/2014/631281
collection DOAJ
language English
format Article
sources DOAJ
author Monika Dryl
Delfim F. M. Torres
spellingShingle Monika Dryl
Delfim F. M. Torres
Necessary Condition for an Euler-Lagrange Equation on Time Scales
Abstract and Applied Analysis
author_facet Monika Dryl
Delfim F. M. Torres
author_sort Monika Dryl
title Necessary Condition for an Euler-Lagrange Equation on Time Scales
title_short Necessary Condition for an Euler-Lagrange Equation on Time Scales
title_full Necessary Condition for an Euler-Lagrange Equation on Time Scales
title_fullStr Necessary Condition for an Euler-Lagrange Equation on Time Scales
title_full_unstemmed Necessary Condition for an Euler-Lagrange Equation on Time Scales
title_sort necessary condition for an euler-lagrange equation on time scales
publisher Hindawi Limited
series Abstract and Applied Analysis
issn 1085-3375
1687-0409
publishDate 2014-01-01
description We prove a necessary condition for a dynamic integrodifferential equation to be an Euler-Lagrange equation. New and interesting results for the discrete and quantum calculus are obtained as particular cases. An example of a second order dynamic equation, which is not an Euler-Lagrange equation on an arbitrary time scale, is given.
url http://dx.doi.org/10.1155/2014/631281
work_keys_str_mv AT monikadryl necessaryconditionforaneulerlagrangeequationontimescales
AT delfimfmtorres necessaryconditionforaneulerlagrangeequationontimescales
_version_ 1725837541076107264