Nonlinear initial-value problems with positive global solutions
We give conditions on $m(t)$, $p(t)$, and $f(t,y,z)$ so that the nonlinear initial-value problem {gather*} frac{1}{m(t)} (p(t)y')' + f(t,y,p(t)y') = 0,quadmbox{for }t>0, y(0)=0,quad lim_{t o 0^+} p(t)y'(t) = B, end{gather*} has at least one positive solution for all $t>0$,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2003-02-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/conf-proc/10/b1/abstr.html |
id |
doaj-456e171f82b94379a299b26d94375b38 |
---|---|
record_format |
Article |
spelling |
doaj-456e171f82b94379a299b26d94375b382020-11-24T20:44:28ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912003-02-01Conference107178Nonlinear initial-value problems with positive global solutionsJohn V. BaxleyCynthia G. EnloeWe give conditions on $m(t)$, $p(t)$, and $f(t,y,z)$ so that the nonlinear initial-value problem {gather*} frac{1}{m(t)} (p(t)y')' + f(t,y,p(t)y') = 0,quadmbox{for }t>0, y(0)=0,quad lim_{t o 0^+} p(t)y'(t) = B, end{gather*} has at least one positive solution for all $t>0$, when $B$ is a sufficiently small positive constant. We allow a singularity at $t=0$ so the solution $y'(t)$ may be unbounded near $t=0$. http://ejde.math.txstate.edu/conf-proc/10/b1/abstr.htmlNonlinear initial-value problemspositive global solutionsCaratheodory. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
John V. Baxley Cynthia G. Enloe |
spellingShingle |
John V. Baxley Cynthia G. Enloe Nonlinear initial-value problems with positive global solutions Electronic Journal of Differential Equations Nonlinear initial-value problems positive global solutions Caratheodory. |
author_facet |
John V. Baxley Cynthia G. Enloe |
author_sort |
John V. Baxley |
title |
Nonlinear initial-value problems with positive global solutions |
title_short |
Nonlinear initial-value problems with positive global solutions |
title_full |
Nonlinear initial-value problems with positive global solutions |
title_fullStr |
Nonlinear initial-value problems with positive global solutions |
title_full_unstemmed |
Nonlinear initial-value problems with positive global solutions |
title_sort |
nonlinear initial-value problems with positive global solutions |
publisher |
Texas State University |
series |
Electronic Journal of Differential Equations |
issn |
1072-6691 |
publishDate |
2003-02-01 |
description |
We give conditions on $m(t)$, $p(t)$, and $f(t,y,z)$ so that the nonlinear initial-value problem {gather*} frac{1}{m(t)} (p(t)y')' + f(t,y,p(t)y') = 0,quadmbox{for }t>0, y(0)=0,quad lim_{t o 0^+} p(t)y'(t) = B, end{gather*} has at least one positive solution for all $t>0$, when $B$ is a sufficiently small positive constant. We allow a singularity at $t=0$ so the solution $y'(t)$ may be unbounded near $t=0$. |
topic |
Nonlinear initial-value problems positive global solutions Caratheodory. |
url |
http://ejde.math.txstate.edu/conf-proc/10/b1/abstr.html |
work_keys_str_mv |
AT johnvbaxley nonlinearinitialvalueproblemswithpositiveglobalsolutions AT cynthiagenloe nonlinearinitialvalueproblemswithpositiveglobalsolutions |
_version_ |
1716817395399524352 |