A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space Exploration

This paper presents a novel framework for the modeling of biological networks. It makes use of recent tools analyzing the robust satisfaction of properties of (hybrid) dynamical systems. The main challenge of this approach as applied to biological systems is to get access to the relevant parameter s...

Full description

Bibliographic Details
Main Authors: Éric Fanchon, Jean Marc Moulis, Nicolas Mobilia, Alexandre Donzé
Format: Article
Language:English
Published: Open Publishing Association 2012-08-01
Series:Electronic Proceedings in Theoretical Computer Science
Online Access:http://arxiv.org/pdf/1208.3851v1
id doaj-455e11e4f2c7476b8dec7643ed39aa71
record_format Article
spelling doaj-455e11e4f2c7476b8dec7643ed39aa712020-11-24T20:53:09ZengOpen Publishing AssociationElectronic Proceedings in Theoretical Computer Science2075-21802012-08-0192Proc. HSB 2012425710.4204/EPTCS.92.4A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space ExplorationÉric FanchonJean Marc MoulisNicolas MobiliaAlexandre DonzéThis paper presents a novel framework for the modeling of biological networks. It makes use of recent tools analyzing the robust satisfaction of properties of (hybrid) dynamical systems. The main challenge of this approach as applied to biological systems is to get access to the relevant parameter sets despite gaps in the available knowledge. An initial estimate of useful parameters was sought by formalizing the known behavior of the biological network in the STL logic using the tool Breach. Then, once a set of parameter values consistent with known biological properties was found, we tried to locally expand it into the largest possible valid region. We applied this methodology in an effort to model and better understand the complex network regulating iron homeostasis in mammalian cells. This system plays an important role in many biological functions, including erythropoiesis, resistance against infections, and proliferation of cancer cells. http://arxiv.org/pdf/1208.3851v1
collection DOAJ
language English
format Article
sources DOAJ
author Éric Fanchon
Jean Marc Moulis
Nicolas Mobilia
Alexandre Donzé
spellingShingle Éric Fanchon
Jean Marc Moulis
Nicolas Mobilia
Alexandre Donzé
A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space Exploration
Electronic Proceedings in Theoretical Computer Science
author_facet Éric Fanchon
Jean Marc Moulis
Nicolas Mobilia
Alexandre Donzé
author_sort Éric Fanchon
title A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space Exploration
title_short A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space Exploration
title_full A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space Exploration
title_fullStr A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space Exploration
title_full_unstemmed A Model of the Cellular Iron Homeostasis Network Using Semi-Formal Methods for Parameter Space Exploration
title_sort model of the cellular iron homeostasis network using semi-formal methods for parameter space exploration
publisher Open Publishing Association
series Electronic Proceedings in Theoretical Computer Science
issn 2075-2180
publishDate 2012-08-01
description This paper presents a novel framework for the modeling of biological networks. It makes use of recent tools analyzing the robust satisfaction of properties of (hybrid) dynamical systems. The main challenge of this approach as applied to biological systems is to get access to the relevant parameter sets despite gaps in the available knowledge. An initial estimate of useful parameters was sought by formalizing the known behavior of the biological network in the STL logic using the tool Breach. Then, once a set of parameter values consistent with known biological properties was found, we tried to locally expand it into the largest possible valid region. We applied this methodology in an effort to model and better understand the complex network regulating iron homeostasis in mammalian cells. This system plays an important role in many biological functions, including erythropoiesis, resistance against infections, and proliferation of cancer cells.
url http://arxiv.org/pdf/1208.3851v1
work_keys_str_mv AT x00c9ricfanchon amodelofthecellularironhomeostasisnetworkusingsemiformalmethodsforparameterspaceexploration
AT jeanmarcmoulis amodelofthecellularironhomeostasisnetworkusingsemiformalmethodsforparameterspaceexploration
AT nicolasmobilia amodelofthecellularironhomeostasisnetworkusingsemiformalmethodsforparameterspaceexploration
AT alexandredonzx00e9 amodelofthecellularironhomeostasisnetworkusingsemiformalmethodsforparameterspaceexploration
AT x00c9ricfanchon modelofthecellularironhomeostasisnetworkusingsemiformalmethodsforparameterspaceexploration
AT jeanmarcmoulis modelofthecellularironhomeostasisnetworkusingsemiformalmethodsforparameterspaceexploration
AT nicolasmobilia modelofthecellularironhomeostasisnetworkusingsemiformalmethodsforparameterspaceexploration
AT alexandredonzx00e9 modelofthecellularironhomeostasisnetworkusingsemiformalmethodsforparameterspaceexploration
_version_ 1716797958300631040