Schauder Fixed Point Theorem in Spaces with Global Nonpositive Curvature

The Schauder fixed point theorem is extended to the context of metric spaces with global nonpositive curvature. Some applications are included.

Bibliographic Details
Main Authors: Ionel Rovenţa, Constantin P. Niculescu
Format: Article
Language:English
Published: SpringerOpen 2009-01-01
Series:Fixed Point Theory and Applications
Online Access:http://dx.doi.org/10.1155/2009/906727
id doaj-453547604dc54b8ebdfd12dd394a0746
record_format Article
spelling doaj-453547604dc54b8ebdfd12dd394a07462020-11-24T20:54:14ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122009-01-01200910.1155/2009/906727Schauder Fixed Point Theorem in Spaces with Global Nonpositive CurvatureIonel RovenţaConstantin P. NiculescuThe Schauder fixed point theorem is extended to the context of metric spaces with global nonpositive curvature. Some applications are included. http://dx.doi.org/10.1155/2009/906727
collection DOAJ
language English
format Article
sources DOAJ
author Ionel Rovenţa
Constantin P. Niculescu
spellingShingle Ionel Rovenţa
Constantin P. Niculescu
Schauder Fixed Point Theorem in Spaces with Global Nonpositive Curvature
Fixed Point Theory and Applications
author_facet Ionel Rovenţa
Constantin P. Niculescu
author_sort Ionel Rovenţa
title Schauder Fixed Point Theorem in Spaces with Global Nonpositive Curvature
title_short Schauder Fixed Point Theorem in Spaces with Global Nonpositive Curvature
title_full Schauder Fixed Point Theorem in Spaces with Global Nonpositive Curvature
title_fullStr Schauder Fixed Point Theorem in Spaces with Global Nonpositive Curvature
title_full_unstemmed Schauder Fixed Point Theorem in Spaces with Global Nonpositive Curvature
title_sort schauder fixed point theorem in spaces with global nonpositive curvature
publisher SpringerOpen
series Fixed Point Theory and Applications
issn 1687-1820
1687-1812
publishDate 2009-01-01
description The Schauder fixed point theorem is extended to the context of metric spaces with global nonpositive curvature. Some applications are included.
url http://dx.doi.org/10.1155/2009/906727
work_keys_str_mv AT ionelrovenamp355a schauderfixedpointtheoreminspaceswithglobalnonpositivecurvature
AT constantinpniculescu schauderfixedpointtheoreminspaceswithglobalnonpositivecurvature
_version_ 1716795195394097152