Towards non-contact photoacoustic imaging [review]

Photoacoustic imaging (PAI) takes advantage of both optical and ultrasound imaging properties to visualize optical absorption with high resolution and contrast. Photoacoustic microscopy (PAM) is usually categorized with all-optical microscopy techniques such as optical coherence tomography or confoc...

Full description

Bibliographic Details
Main Authors: Zohreh Hosseinaee, Martin Le, Kevan Bell, Parsin Haji Reza
Format: Article
Language:English
Published: Elsevier 2020-12-01
Series:Photoacoustics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213597920300471
Description
Summary:Photoacoustic imaging (PAI) takes advantage of both optical and ultrasound imaging properties to visualize optical absorption with high resolution and contrast. Photoacoustic microscopy (PAM) is usually categorized with all-optical microscopy techniques such as optical coherence tomography or confocal microscopes. Despite offering high sensitivity, novel imaging contrast, and high resolution, PAM is not generally an all-optical imaging method unlike the other microscopy techniques. One of the significant limitations of photoacoustic microscopes arises from their need to be in physical contact with the sample through a coupling media. This physical contact, coupling, or immersion of the sample is undesirable or impractical for many clinical and pre-clinical applications. This also limits the flexibility of photoacoustic techniques to be integrated with other all-optical imaging microscopes for providing complementary imaging contrast. To overcome these limitations, several non-contact photoacoustic signal detection approaches have been proposed. This paper presents a brief overview of current non-contact photoacoustic detection techniques with an emphasis on all-optical detection methods and their associated physical mechanisms.
ISSN:2213-5979