Experimental Research on Data Synchronous Acquisition Method of Subsidence Monitoring in Submarine Gas Hydrate Mining Area

The data synchronous acquisition is crucial to the seafloor subsidence monitoring system for gas hydrate mining areas based on microelectromechanical sensors (MEMS). Because the independent and high-precision time reference sources on land cannot be used on the seafloor, especially in the deep sea,...

Full description

Bibliographic Details
Main Authors: Jiawang Chen, Chen Cao, Yongqiang Ge, Huangchao Zhu, Chunying Xu, Yan Sheng, Lieyu Tian, Hanquan Zhang
Format: Article
Language:English
Published: MDPI AG 2019-10-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/19/19/4319
Description
Summary:The data synchronous acquisition is crucial to the seafloor subsidence monitoring system for gas hydrate mining areas based on microelectromechanical sensors (MEMS). Because the independent and high-precision time reference sources on land cannot be used on the seafloor, especially in the deep sea, a relative time synchronization method based on input/output (I/O) and controller area network (CAN) bus was proposed to realize the internal time synchronization of the system. To demonstrate the feasibility of the proposed method, tests including the deformation test of the MEMS sensor array under high pressure, synchronous accuracy test, and landslide and collapse simulation tests were carried out. The synchronization method was performed once every 24 h, and the time drift was reduced to 0.38 ms from more than 30 ms, demonstrating that method can achieve consistent internal time of the system. The method does not require additional hardware devices and has adjustable accuracy.
ISSN:1424-8220