HIV-Specific T Cell Responses Are Highly Stable on Antiretroviral Therapy

HIV infection induces a robust T cell response that is sustained by high viremia, but falls following the onset of antiretroviral therapy (ART). Relatively little has been reported on the subsequent stability of the HIV-specific T cell response in individuals on durable therapy. Such data are critic...

Full description

Bibliographic Details
Main Authors: Yinyan Xu, Ilana M. Trumble, Joanna A. Warren, Genevieve Clutton, Maria Abad-Fernandez, Jennifer Kirchnerr, Adaora A. Adimora, Steven G. Deeks, David M. Margolis, JoAnn D. Kuruc, Cynthia L. Gay, Nancie M. Archin, Katie R. Mollan, Michael Hudgens, Nilu Goonetilleke
Format: Article
Language:English
Published: Elsevier 2019-12-01
Series:Molecular Therapy: Methods & Clinical Development
Online Access:http://www.sciencedirect.com/science/article/pii/S2329050119300816
Description
Summary:HIV infection induces a robust T cell response that is sustained by high viremia, but falls following the onset of antiretroviral therapy (ART). Relatively little has been reported on the subsequent stability of the HIV-specific T cell response in individuals on durable therapy. Such data are critical for powering clinical trials testing T cell-based immunotherapies. In a cross-sectional study, HIV-specific T cell responses were detectable by ex vivo interferon (IFN)-γ ELISpot (average ∼1,100 spot-forming units [SFUs]/106 peripheral blood mononuclear cells) in persons living with HIV (PLWH; n = 34), despite median durable ART suppression of 5.0 years. No substantial association was detected between the summed HIV-specific T cell response and the size of the replication-competent HIV reservoir. T cell responses were next measured in participants sampled weekly, monthly, or yearly. HIV-specific T cell responses were highly stable over the time periods examined; within-individual variation ranged from 16% coefficient of variation (CV) for weekly to 27% CV for yearly sampling. These data were used to generate power calculations for future immunotherapy studies. The stability of the HIV-specific T cell response in suppressed PLWH will enable powered studies of small sizes (e.g., n = 6–12), facilitating rapid and iterative testing for T cell-based immunotherapies against HIV. Keywords: HIV, T cell, immunotherapy, CD8
ISSN:2329-0501