Human-Robot Interaction and Demonstration Learning Mode Based on Electromyogram Signal and Variable Impedance Control

In this research, properties of variable admittance controller and variable impedance controller were simulated by MATLAB firstly, which reflected the good performance of these two controllers under trajectory tracking and physical interaction. Secondly, a new mode of learning from demonstration (Lf...

Full description

Bibliographic Details
Main Authors: Rui Wu, He Zhang, Tao Peng, Le Fu, Jie Zhao
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2018/8658791
Description
Summary:In this research, properties of variable admittance controller and variable impedance controller were simulated by MATLAB firstly, which reflected the good performance of these two controllers under trajectory tracking and physical interaction. Secondly, a new mode of learning from demonstration (LfD) that conforms to human intuitive and has good interaction performances was developed by combining the electromyogram (EMG) signals and variable impedance (admittance) controller in dragging demonstration. In this learning by demonstration mode, demonstrators not only can interact with manipulator intuitively, but also can transmit end-effector trajectories and impedance gain scheduling to the manipulator for learning. A dragging demonstration experiment in 2D space was carried out with such learning mode. Experimental results revealed that the designed human-robot interaction and demonstration mode is conducive to demonstrators to control interaction performance of manipulator directly, which improves accuracy and time efficiency of the demonstration task. Moreover, the trajectory and impedance gain scheduling could be retained for the next learning process in the autonomous compliant operations of manipulator.
ISSN:1024-123X
1563-5147