A New Hybrid Projection Algorithm for System of Equilibrium Problems and Variational Inequality Problems and Two Finite Families of Quasi-ϕ-Nonexpansive Mappings
We introduce a modified Mann’s iterative procedure by using the hybrid projection method for solving the common solution of the system of equilibrium problems for a finite family of bifunctions satisfying certain condition, the common solution of fixed point problems for two finite families of quasi...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2013-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2013/107296 |
id |
doaj-44ed055bc4584afa8ac95b6b9f2bd051 |
---|---|
record_format |
Article |
spelling |
doaj-44ed055bc4584afa8ac95b6b9f2bd0512020-11-24T22:01:48ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/107296107296A New Hybrid Projection Algorithm for System of Equilibrium Problems and Variational Inequality Problems and Two Finite Families of Quasi-ϕ-Nonexpansive MappingsPongrus Phuangphoo0Poom Kumam1Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Mod, Thung Kru, Bangkok 10140, ThailandDepartment of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), Bang Mod, Thung Kru, Bangkok 10140, ThailandWe introduce a modified Mann’s iterative procedure by using the hybrid projection method for solving the common solution of the system of equilibrium problems for a finite family of bifunctions satisfying certain condition, the common solution of fixed point problems for two finite families of quasi-ϕ-nonexpansive mappings, and the common solution of variational inequality problems for a finite family of continuous monotone mappings in a uniformly smooth and strictly convex real Banach space. Then, we prove a strong convergence theorem of the iterative procedure generated by some mild conditions. Our result presented in this paper improves and generalizes some well-known results in the literature.http://dx.doi.org/10.1155/2013/107296 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Pongrus Phuangphoo Poom Kumam |
spellingShingle |
Pongrus Phuangphoo Poom Kumam A New Hybrid Projection Algorithm for System of Equilibrium Problems and Variational Inequality Problems and Two Finite Families of Quasi-ϕ-Nonexpansive Mappings Abstract and Applied Analysis |
author_facet |
Pongrus Phuangphoo Poom Kumam |
author_sort |
Pongrus Phuangphoo |
title |
A New Hybrid Projection Algorithm for System of Equilibrium Problems and Variational Inequality Problems and Two Finite Families of Quasi-ϕ-Nonexpansive Mappings |
title_short |
A New Hybrid Projection Algorithm for System of Equilibrium Problems and Variational Inequality Problems and Two Finite Families of Quasi-ϕ-Nonexpansive Mappings |
title_full |
A New Hybrid Projection Algorithm for System of Equilibrium Problems and Variational Inequality Problems and Two Finite Families of Quasi-ϕ-Nonexpansive Mappings |
title_fullStr |
A New Hybrid Projection Algorithm for System of Equilibrium Problems and Variational Inequality Problems and Two Finite Families of Quasi-ϕ-Nonexpansive Mappings |
title_full_unstemmed |
A New Hybrid Projection Algorithm for System of Equilibrium Problems and Variational Inequality Problems and Two Finite Families of Quasi-ϕ-Nonexpansive Mappings |
title_sort |
new hybrid projection algorithm for system of equilibrium problems and variational inequality problems and two finite families of quasi-ϕ-nonexpansive mappings |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 1687-0409 |
publishDate |
2013-01-01 |
description |
We introduce a modified Mann’s iterative procedure by using the hybrid projection method for solving the common solution of the system of equilibrium problems for a finite family of bifunctions satisfying certain condition, the common solution of fixed point problems for two finite families of quasi-ϕ-nonexpansive mappings, and the common solution of variational inequality problems for a finite family of continuous monotone mappings in a uniformly smooth and strictly convex real Banach space. Then, we prove a strong convergence theorem of the iterative procedure generated by some mild conditions. Our result presented in this paper improves and generalizes some well-known results in the literature. |
url |
http://dx.doi.org/10.1155/2013/107296 |
work_keys_str_mv |
AT pongrusphuangphoo anewhybridprojectionalgorithmforsystemofequilibriumproblemsandvariationalinequalityproblemsandtwofinitefamiliesofquasiphnonexpansivemappings AT poomkumam anewhybridprojectionalgorithmforsystemofequilibriumproblemsandvariationalinequalityproblemsandtwofinitefamiliesofquasiphnonexpansivemappings AT pongrusphuangphoo newhybridprojectionalgorithmforsystemofequilibriumproblemsandvariationalinequalityproblemsandtwofinitefamiliesofquasiphnonexpansivemappings AT poomkumam newhybridprojectionalgorithmforsystemofequilibriumproblemsandvariationalinequalityproblemsandtwofinitefamiliesofquasiphnonexpansivemappings |
_version_ |
1725838483304480768 |