Silica Nanoparticles Reinforced Ionogel as Nonvolatile and Stretchable Conductors

Ionogels combine the advantages of being conductive, stretchable, transparent and nonvolatile, which makes them suitable to be applied as conductors for flexible electronic devices. In this paper, a series of ionogels based on 1-ethyl-3-methylimidazolium ethyl-sulfate ([C<sub>2</sub>mim]...

Full description

Bibliographic Details
Main Authors: Shanshan Zhang, Zhen Li, Pei Huang, Yamei Lu, Pengfei Wang
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Membranes
Subjects:
Online Access:https://www.mdpi.com/2077-0375/10/11/354
Description
Summary:Ionogels combine the advantages of being conductive, stretchable, transparent and nonvolatile, which makes them suitable to be applied as conductors for flexible electronic devices. In this paper, a series of ionogels based on 1-ethyl-3-methylimidazolium ethyl-sulfate ([C<sub>2</sub>mim][EtSO<sub>4</sub>]) and polyacrylic networks were prepared. Silica nanoparticles (SNPs) were dispersed into the ionogel matrix to enhance its mechanical properties. The thermal, mechanical and electrical properties of the ionogels with various contents of crosslinking agents and SNPs were studied. The results show that a small amount of SNP doping just increases the breaking strain/stress and the nonvolatility of ionogels, as well as maintaining adequate conductivity and a high degree of transparency. Furthermore, the experimental results demonstrate that SNP-reinforced ionogels can be applied as conductors for dielectric elastomer actuators and stretchable wires, as well as for signal transmission.
ISSN:2077-0375