A class of principal ideal rings arising from the converse of the Chinese remainder theorem

Let R be a (nonzero commutative unital) ring. If I and J are ideals of R such that R/I⊕R/J is a cyclic R-module, then I+J=R. The rings R such that R/I⊕R/J is a cyclic R-module for all distinct nonzero proper ideals I and J of R are the following three types of principal ideal rings: fields, rings is...

Full description

Bibliographic Details
Main Author: David E. Dobbs
Format: Article
Language:English
Published: Hindawi Limited 2006-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/IJMMS/2006/19607
Description
Summary:Let R be a (nonzero commutative unital) ring. If I and J are ideals of R such that R/I⊕R/J is a cyclic R-module, then I+J=R. The rings R such that R/I⊕R/J is a cyclic R-module for all distinct nonzero proper ideals I and J of R are the following three types of principal ideal rings: fields, rings isomorphic to K×L for the fields K and L, and special principal ideal rings (R,M) such that M2=0.
ISSN:0161-1712
1687-0425