Summary: | Abstract Convolutional neural networks (CNN) are utilized to encode the relation between initial configurations of obstacles and three fundamental quantities in porous media: porosity ( $$\varphi$$ φ ), permeability (k), and tortuosity (T). The two-dimensional systems with obstacles are considered. The fluid flow through a porous medium is simulated with the lattice Boltzmann method. The analysis has been performed for the systems with $$\varphi \in (0.37,0.99)$$ φ ∈ ( 0.37 , 0.99 ) which covers five orders of magnitude a span for permeability $$k \in (0.78, 2.1\times 10^5)$$ k ∈ ( 0.78 , 2.1 × 10 5 ) and tortuosity $$T \in (1.03,2.74)$$ T ∈ ( 1.03 , 2.74 ) . It is shown that the CNNs can be used to predict the porosity, permeability, and tortuosity with good accuracy. With the usage of the CNN models, the relation between T and $$\varphi$$ φ has been obtained and compared with the empirical estimate.
|