Design and optimization of a XY compliant mechanical displacement amplifier

Piezoelectric actuators are increasingly becoming popular for the use in various industrial, pharmaceutical, and engineering applications. However, their short motion range limits their wide applications. This shortcoming can be overcome by coupling the piezoelectric actuators with a mechanical disp...

Full description

Bibliographic Details
Main Authors: A. Eskandari, P. R. Ouyang
Format: Article
Language:English
Published: Copernicus Publications 2013-09-01
Series:Mechanical Sciences
Online Access:http://www.mech-sci.net/4/303/2013/ms-4-303-2013.pdf
Description
Summary:Piezoelectric actuators are increasingly becoming popular for the use in various industrial, pharmaceutical, and engineering applications. However, their short motion range limits their wide applications. This shortcoming can be overcome by coupling the piezoelectric actuators with a mechanical displacement amplifier. In this paper, a new design for a XY planar motion compliant mechanical displacement amplifier (CMDA) based on the design of a symmetric five-bar compliant mechanical amplifier is introduced. Detailed analysis with Finite Element Method (FEM) of static and dynamic characteristics of the proposed XY CMDA design is also provided. Finally, the optimization process and results to increase the Amplification Ratio (AR) of the proposed XY compliant mechanism with minimal compromise in Natural Frequency (NF) is discussed.
ISSN:2191-9151
2191-916X