Online Signature Verification on MOBISIG Finger-Drawn Signature Corpus

We present MOBISIG, a pseudosignature dataset containing finger-drawn signatures from 83 users captured with a capacitive touchscreen-based mobile device. The database was captured in three sessions resulting in 45 genuine signatures and 20 skilled forgeries for each user. The database was evaluated...

Full description

Bibliographic Details
Main Authors: Margit Antal, László Zsolt Szabó, Tünde Tordai
Format: Article
Language:English
Published: Hindawi Limited 2018-01-01
Series:Mobile Information Systems
Online Access:http://dx.doi.org/10.1155/2018/3127042
Description
Summary:We present MOBISIG, a pseudosignature dataset containing finger-drawn signatures from 83 users captured with a capacitive touchscreen-based mobile device. The database was captured in three sessions resulting in 45 genuine signatures and 20 skilled forgeries for each user. The database was evaluated by two state-of-the-art methods: a function-based system using local features and a feature-based system using global features. Two types of equal error rate computations are performed: one using a global threshold and the other using user-specific thresholds. The lowest equal error rate was 0.01% against random forgeries and 5.81% against skilled forgeries using user-specific thresholds that were computed a posteriori. However, these equal error rates were significantly raised to 1.68% (random forgeries case) and 14.31% (skilled forgeries case) using global thresholds. The same evaluation protocol was performed on the DooDB publicly available dataset. Besides verification performance evaluations conducted on the two finger-drawn datasets, we evaluated the quality of the samples and the users of the two datasets using basic quality measures. The results show that finger-drawn signatures can be used by biometric systems with reasonable accuracy.
ISSN:1574-017X
1875-905X