Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities

We present a general method for solving the modified Helmholtz equation without shape approximation for an arbitrary periodic charge distribution, whose solution is known as the Yukawa potential or the screened Coulomb potential. The method is an extension of Weinert’s pseudo-charge method [Weinert...

Full description

Bibliographic Details
Main Authors: Miriam Winkelmann, Edoardo Di Napoli, Daniel Wortmann, Stefan Blügel
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-03-01
Series:Frontiers in Physics
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fphy.2020.618142/full
id doaj-448e31e476be4e1281292ab6f4117043
record_format Article
spelling doaj-448e31e476be4e1281292ab6f41170432021-03-11T07:41:54ZengFrontiers Media S.A.Frontiers in Physics2296-424X2021-03-01810.3389/fphy.2020.618142618142Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge DensitiesMiriam Winkelmann0Miriam Winkelmann1Miriam Winkelmann2Miriam Winkelmann3Miriam Winkelmann4Edoardo Di Napoli5Edoardo Di Napoli6Edoardo Di Napoli7Daniel Wortmann8Daniel Wortmann9Daniel Wortmann10Stefan Blügel11Stefan Blügel12Stefan Blügel13Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, GermanyJARA-CSD, Jülich, GermanyJülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, GermanyPeter Grünberg Institute, Forschungszentrum Jülich, Jülich, GermanyPhysics Department, RWTH-Aachen University, Aachen, GermanyInstitute for Advanced Simulation, Forschungszentrum Jülich, Jülich, GermanyJARA-CSD, Jülich, GermanyJülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, GermanyInstitute for Advanced Simulation, Forschungszentrum Jülich, Jülich, GermanyJARA-CSD, Jülich, GermanyPeter Grünberg Institute, Forschungszentrum Jülich, Jülich, GermanyInstitute for Advanced Simulation, Forschungszentrum Jülich, Jülich, GermanyJARA-CSD, Jülich, GermanyPeter Grünberg Institute, Forschungszentrum Jülich, Jülich, GermanyWe present a general method for solving the modified Helmholtz equation without shape approximation for an arbitrary periodic charge distribution, whose solution is known as the Yukawa potential or the screened Coulomb potential. The method is an extension of Weinert’s pseudo-charge method [Weinert M, J Math Phys, 1981, 22:2433–2439] for solving the Poisson equation for the same class of charge density distributions. The inherent differences between the Poisson and the modified Helmholtz equation are in their respective radial solutions. These are polynomial functions, for the Poisson equation, and modified spherical Bessel functions, for the modified Helmholtz equation. This leads to a definition of a modified pseudo-charge density and modified multipole moments. We have shown that Weinert’s convergence analysis of an absolutely and uniformly convergent Fourier series of the pseudo-charge density is transferred to the modified pseudo-charge density. We conclude by illustrating the algorithmic changes necessary to turn an available implementation of the Poisson solver into a solver for the modified Helmholtz equation.https://www.frontiersin.org/articles/10.3389/fphy.2020.618142/fullpartial differential equationsdensity functional theoryelectronic structure methodsGreen functions techniquematerials scienceelectrostatics
collection DOAJ
language English
format Article
sources DOAJ
author Miriam Winkelmann
Miriam Winkelmann
Miriam Winkelmann
Miriam Winkelmann
Miriam Winkelmann
Edoardo Di Napoli
Edoardo Di Napoli
Edoardo Di Napoli
Daniel Wortmann
Daniel Wortmann
Daniel Wortmann
Stefan Blügel
Stefan Blügel
Stefan Blügel
spellingShingle Miriam Winkelmann
Miriam Winkelmann
Miriam Winkelmann
Miriam Winkelmann
Miriam Winkelmann
Edoardo Di Napoli
Edoardo Di Napoli
Edoardo Di Napoli
Daniel Wortmann
Daniel Wortmann
Daniel Wortmann
Stefan Blügel
Stefan Blügel
Stefan Blügel
Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities
Frontiers in Physics
partial differential equations
density functional theory
electronic structure methods
Green functions technique
materials science
electrostatics
author_facet Miriam Winkelmann
Miriam Winkelmann
Miriam Winkelmann
Miriam Winkelmann
Miriam Winkelmann
Edoardo Di Napoli
Edoardo Di Napoli
Edoardo Di Napoli
Daniel Wortmann
Daniel Wortmann
Daniel Wortmann
Stefan Blügel
Stefan Blügel
Stefan Blügel
author_sort Miriam Winkelmann
title Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities
title_short Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities
title_full Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities
title_fullStr Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities
title_full_unstemmed Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities
title_sort solution to the modified helmholtz equation for arbitrary periodic charge densities
publisher Frontiers Media S.A.
series Frontiers in Physics
issn 2296-424X
publishDate 2021-03-01
description We present a general method for solving the modified Helmholtz equation without shape approximation for an arbitrary periodic charge distribution, whose solution is known as the Yukawa potential or the screened Coulomb potential. The method is an extension of Weinert’s pseudo-charge method [Weinert M, J Math Phys, 1981, 22:2433–2439] for solving the Poisson equation for the same class of charge density distributions. The inherent differences between the Poisson and the modified Helmholtz equation are in their respective radial solutions. These are polynomial functions, for the Poisson equation, and modified spherical Bessel functions, for the modified Helmholtz equation. This leads to a definition of a modified pseudo-charge density and modified multipole moments. We have shown that Weinert’s convergence analysis of an absolutely and uniformly convergent Fourier series of the pseudo-charge density is transferred to the modified pseudo-charge density. We conclude by illustrating the algorithmic changes necessary to turn an available implementation of the Poisson solver into a solver for the modified Helmholtz equation.
topic partial differential equations
density functional theory
electronic structure methods
Green functions technique
materials science
electrostatics
url https://www.frontiersin.org/articles/10.3389/fphy.2020.618142/full
work_keys_str_mv AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT edoardodinapoli solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT edoardodinapoli solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT edoardodinapoli solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT danielwortmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT danielwortmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT danielwortmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT stefanblugel solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT stefanblugel solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
AT stefanblugel solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities
_version_ 1724225903637037056