Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities
We present a general method for solving the modified Helmholtz equation without shape approximation for an arbitrary periodic charge distribution, whose solution is known as the Yukawa potential or the screened Coulomb potential. The method is an extension of Weinert’s pseudo-charge method [Weinert...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-03-01
|
Series: | Frontiers in Physics |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/fphy.2020.618142/full |
id |
doaj-448e31e476be4e1281292ab6f4117043 |
---|---|
record_format |
Article |
spelling |
doaj-448e31e476be4e1281292ab6f41170432021-03-11T07:41:54ZengFrontiers Media S.A.Frontiers in Physics2296-424X2021-03-01810.3389/fphy.2020.618142618142Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge DensitiesMiriam Winkelmann0Miriam Winkelmann1Miriam Winkelmann2Miriam Winkelmann3Miriam Winkelmann4Edoardo Di Napoli5Edoardo Di Napoli6Edoardo Di Napoli7Daniel Wortmann8Daniel Wortmann9Daniel Wortmann10Stefan Blügel11Stefan Blügel12Stefan Blügel13Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, GermanyJARA-CSD, Jülich, GermanyJülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, GermanyPeter Grünberg Institute, Forschungszentrum Jülich, Jülich, GermanyPhysics Department, RWTH-Aachen University, Aachen, GermanyInstitute for Advanced Simulation, Forschungszentrum Jülich, Jülich, GermanyJARA-CSD, Jülich, GermanyJülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, GermanyInstitute for Advanced Simulation, Forschungszentrum Jülich, Jülich, GermanyJARA-CSD, Jülich, GermanyPeter Grünberg Institute, Forschungszentrum Jülich, Jülich, GermanyInstitute for Advanced Simulation, Forschungszentrum Jülich, Jülich, GermanyJARA-CSD, Jülich, GermanyPeter Grünberg Institute, Forschungszentrum Jülich, Jülich, GermanyWe present a general method for solving the modified Helmholtz equation without shape approximation for an arbitrary periodic charge distribution, whose solution is known as the Yukawa potential or the screened Coulomb potential. The method is an extension of Weinert’s pseudo-charge method [Weinert M, J Math Phys, 1981, 22:2433–2439] for solving the Poisson equation for the same class of charge density distributions. The inherent differences between the Poisson and the modified Helmholtz equation are in their respective radial solutions. These are polynomial functions, for the Poisson equation, and modified spherical Bessel functions, for the modified Helmholtz equation. This leads to a definition of a modified pseudo-charge density and modified multipole moments. We have shown that Weinert’s convergence analysis of an absolutely and uniformly convergent Fourier series of the pseudo-charge density is transferred to the modified pseudo-charge density. We conclude by illustrating the algorithmic changes necessary to turn an available implementation of the Poisson solver into a solver for the modified Helmholtz equation.https://www.frontiersin.org/articles/10.3389/fphy.2020.618142/fullpartial differential equationsdensity functional theoryelectronic structure methodsGreen functions techniquematerials scienceelectrostatics |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Miriam Winkelmann Miriam Winkelmann Miriam Winkelmann Miriam Winkelmann Miriam Winkelmann Edoardo Di Napoli Edoardo Di Napoli Edoardo Di Napoli Daniel Wortmann Daniel Wortmann Daniel Wortmann Stefan Blügel Stefan Blügel Stefan Blügel |
spellingShingle |
Miriam Winkelmann Miriam Winkelmann Miriam Winkelmann Miriam Winkelmann Miriam Winkelmann Edoardo Di Napoli Edoardo Di Napoli Edoardo Di Napoli Daniel Wortmann Daniel Wortmann Daniel Wortmann Stefan Blügel Stefan Blügel Stefan Blügel Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities Frontiers in Physics partial differential equations density functional theory electronic structure methods Green functions technique materials science electrostatics |
author_facet |
Miriam Winkelmann Miriam Winkelmann Miriam Winkelmann Miriam Winkelmann Miriam Winkelmann Edoardo Di Napoli Edoardo Di Napoli Edoardo Di Napoli Daniel Wortmann Daniel Wortmann Daniel Wortmann Stefan Blügel Stefan Blügel Stefan Blügel |
author_sort |
Miriam Winkelmann |
title |
Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities |
title_short |
Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities |
title_full |
Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities |
title_fullStr |
Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities |
title_full_unstemmed |
Solution to the Modified Helmholtz Equation for Arbitrary Periodic Charge Densities |
title_sort |
solution to the modified helmholtz equation for arbitrary periodic charge densities |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Physics |
issn |
2296-424X |
publishDate |
2021-03-01 |
description |
We present a general method for solving the modified Helmholtz equation without shape approximation for an arbitrary periodic charge distribution, whose solution is known as the Yukawa potential or the screened Coulomb potential. The method is an extension of Weinert’s pseudo-charge method [Weinert M, J Math Phys, 1981, 22:2433–2439] for solving the Poisson equation for the same class of charge density distributions. The inherent differences between the Poisson and the modified Helmholtz equation are in their respective radial solutions. These are polynomial functions, for the Poisson equation, and modified spherical Bessel functions, for the modified Helmholtz equation. This leads to a definition of a modified pseudo-charge density and modified multipole moments. We have shown that Weinert’s convergence analysis of an absolutely and uniformly convergent Fourier series of the pseudo-charge density is transferred to the modified pseudo-charge density. We conclude by illustrating the algorithmic changes necessary to turn an available implementation of the Poisson solver into a solver for the modified Helmholtz equation. |
topic |
partial differential equations density functional theory electronic structure methods Green functions technique materials science electrostatics |
url |
https://www.frontiersin.org/articles/10.3389/fphy.2020.618142/full |
work_keys_str_mv |
AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT miriamwinkelmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT edoardodinapoli solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT edoardodinapoli solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT edoardodinapoli solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT danielwortmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT danielwortmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT danielwortmann solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT stefanblugel solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT stefanblugel solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities AT stefanblugel solutiontothemodifiedhelmholtzequationforarbitraryperiodicchargedensities |
_version_ |
1724225903637037056 |