A Space-Variant Visual Pathway Model for Data Efficient Deep Learning
We present an investigation into adopting a model of the retino-cortical mapping, found in biological visual systems, to improve the efficiency of image analysis using Deep Convolutional Neural Nets (DCNNs) in the context of robot vision and egocentric perception systems. This work has now enabled D...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-03-01
|
Series: | Frontiers in Cellular Neuroscience |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fncel.2019.00036/full |
id |
doaj-4488c78b2e1b4bfda7f62cedf6aafd10 |
---|---|
record_format |
Article |
spelling |
doaj-4488c78b2e1b4bfda7f62cedf6aafd102020-11-25T01:00:23ZengFrontiers Media S.A.Frontiers in Cellular Neuroscience1662-51022019-03-011310.3389/fncel.2019.00036427977A Space-Variant Visual Pathway Model for Data Efficient Deep LearningPiotr OzimekNina HristozovaLorinc BalogJan Paul SiebertWe present an investigation into adopting a model of the retino-cortical mapping, found in biological visual systems, to improve the efficiency of image analysis using Deep Convolutional Neural Nets (DCNNs) in the context of robot vision and egocentric perception systems. This work has now enabled DCNNs to process input images approaching one million pixels in size, in real time, using only consumer grade graphics processor (GPU) hardware in a single pass of the DCNN.https://www.frontiersin.org/article/10.3389/fncel.2019.00036/fulldata efficiencydeep learningretinafoveated visionbiological visionegocentric perception |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Piotr Ozimek Nina Hristozova Lorinc Balog Jan Paul Siebert |
spellingShingle |
Piotr Ozimek Nina Hristozova Lorinc Balog Jan Paul Siebert A Space-Variant Visual Pathway Model for Data Efficient Deep Learning Frontiers in Cellular Neuroscience data efficiency deep learning retina foveated vision biological vision egocentric perception |
author_facet |
Piotr Ozimek Nina Hristozova Lorinc Balog Jan Paul Siebert |
author_sort |
Piotr Ozimek |
title |
A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_short |
A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_full |
A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_fullStr |
A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_full_unstemmed |
A Space-Variant Visual Pathway Model for Data Efficient Deep Learning |
title_sort |
space-variant visual pathway model for data efficient deep learning |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Cellular Neuroscience |
issn |
1662-5102 |
publishDate |
2019-03-01 |
description |
We present an investigation into adopting a model of the retino-cortical mapping, found in biological visual systems, to improve the efficiency of image analysis using Deep Convolutional Neural Nets (DCNNs) in the context of robot vision and egocentric perception systems. This work has now enabled DCNNs to process input images approaching one million pixels in size, in real time, using only consumer grade graphics processor (GPU) hardware in a single pass of the DCNN. |
topic |
data efficiency deep learning retina foveated vision biological vision egocentric perception |
url |
https://www.frontiersin.org/article/10.3389/fncel.2019.00036/full |
work_keys_str_mv |
AT piotrozimek aspacevariantvisualpathwaymodelfordataefficientdeeplearning AT ninahristozova aspacevariantvisualpathwaymodelfordataefficientdeeplearning AT lorincbalog aspacevariantvisualpathwaymodelfordataefficientdeeplearning AT janpaulsiebert aspacevariantvisualpathwaymodelfordataefficientdeeplearning AT piotrozimek spacevariantvisualpathwaymodelfordataefficientdeeplearning AT ninahristozova spacevariantvisualpathwaymodelfordataefficientdeeplearning AT lorincbalog spacevariantvisualpathwaymodelfordataefficientdeeplearning AT janpaulsiebert spacevariantvisualpathwaymodelfordataefficientdeeplearning |
_version_ |
1725213762713026560 |