Singular Eigenfunctions of Calogero-Sutherland Type Systems and How to Transform Them into Regular Ones
There exists a large class of quantum many-body systems of Calogero-Sutherland type where all particles can have different masses and coupling constants and which nevertheless are such that one can construct a complete (in a certain sense) set of exact eigenfunctions and corresponding eigenvalues, e...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
National Academy of Science of Ukraine
2007-02-01
|
Series: | Symmetry, Integrability and Geometry: Methods and Applications |
Subjects: | |
Online Access: | http://www.emis.de/journals/SIGMA/2007/031/ |
Summary: | There exists a large class of quantum many-body systems of Calogero-Sutherland type where all particles can have different masses and coupling constants and which nevertheless are such that one can construct a complete (in a certain sense) set of exact eigenfunctions and corresponding eigenvalues, explicitly. Of course there is a catch to this result: if one insists on these eigenfunctions to be square integrable then the corresponding Hamiltonian is necessarily non-hermitean (and thus provides an example of an exactly solvable PT-symmetric quantum-many body system), and if one insists on the Hamiltonian to be hermitean then the eigenfunctions are singular and thus not acceptable as quantum mechanical eigenfunctions. The standard Calogero-Sutherland Hamiltonian is special due to the existence of an integral operator which allows to transform these singular eigenfunctions into regular ones. |
---|---|
ISSN: | 1815-0659 |