Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2019-08-01
|
Series: | Advances in Nonlinear Analysis |
Subjects: | |
Online Access: | https://doi.org/10.1515/anona-2020-0021 |
id |
doaj-4472e16d746a4643a926eead5e24ed34 |
---|---|
record_format |
Article |
spelling |
doaj-4472e16d746a4643a926eead5e24ed342021-09-06T19:39:56ZengDe GruyterAdvances in Nonlinear Analysis2191-950X2019-08-019169070910.1515/anona-2020-0021anona-2020-0021Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponentXiang Mingqi0Zhang Binlin1Rădulescu Vicenţiu D.2College of Science, Civil Aviation University of China, Tianjin, 300300, P.R. ChinaCollege of Mathematics and System Science, Shandong University of Science and Technology, Qingdao, 266590, P.R. ChinaFaculty of Applied Mathematics, AGH University of Science and Technology, 30-059 Kraków, Poland and Department of Mathematics, University of Craiova, Street A.I. Cuza No. 13, 200585Craiova, RomaniaThis paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem:https://doi.org/10.1515/anona-2020-0021schrödinger–kirchhoff problemfractional p–laplacianmultiple solutionscritical exponentprinciple of concentration compactness35r1135a1547g20 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xiang Mingqi Zhang Binlin Rădulescu Vicenţiu D. |
spellingShingle |
Xiang Mingqi Zhang Binlin Rădulescu Vicenţiu D. Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent Advances in Nonlinear Analysis schrödinger–kirchhoff problem fractional p–laplacian multiple solutions critical exponent principle of concentration compactness 35r11 35a15 47g20 |
author_facet |
Xiang Mingqi Zhang Binlin Rădulescu Vicenţiu D. |
author_sort |
Xiang Mingqi |
title |
Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent |
title_short |
Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent |
title_full |
Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent |
title_fullStr |
Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent |
title_full_unstemmed |
Superlinear Schrödinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent |
title_sort |
superlinear schrödinger–kirchhoff type problems involving the fractional p–laplacian and critical exponent |
publisher |
De Gruyter |
series |
Advances in Nonlinear Analysis |
issn |
2191-950X |
publishDate |
2019-08-01 |
description |
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent. As a particular case, we study the following degenerate Kirchhoff-type nonlocal problem: |
topic |
schrödinger–kirchhoff problem fractional p–laplacian multiple solutions critical exponent principle of concentration compactness 35r11 35a15 47g20 |
url |
https://doi.org/10.1515/anona-2020-0021 |
work_keys_str_mv |
AT xiangmingqi superlinearschrodingerkirchhofftypeproblemsinvolvingthefractionalplaplacianandcriticalexponent AT zhangbinlin superlinearschrodingerkirchhofftypeproblemsinvolvingthefractionalplaplacianandcriticalexponent AT radulescuvicentiud superlinearschrodingerkirchhofftypeproblemsinvolvingthefractionalplaplacianandcriticalexponent |
_version_ |
1717769666973138944 |