Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel
Voltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains...
Main Authors: | , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2019-09-01
|
Series: | Frontiers in Pharmacology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fphar.2019.00953/full |
id |
doaj-4464bf84a7ef4033a00db58a1fd06aed |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Mikhail Yu. Myshkin Roope Männikkö Olesya A. Krumkacheva Dmitrii S. Kulbatskii Anton O. Chugunov Anton O. Chugunov Anton O. Chugunov Antonina A. Berkut Alexander S. Paramonov Mikhail A. Shulepko Matvey V. Fedin Michael G. Hanna Dimitri M. Kullmann Elena G. Bagryanskaya Alexander S. Arseniev Alexander S. Arseniev Mikhail P. Kirpichnikov Mikhail P. Kirpichnikov Ekaterina N. Lyukmanova Ekaterina N. Lyukmanova Alexander A. Vassilevski Alexander A. Vassilevski Zakhar O. Shenkarev Zakhar O. Shenkarev |
spellingShingle |
Mikhail Yu. Myshkin Roope Männikkö Olesya A. Krumkacheva Dmitrii S. Kulbatskii Anton O. Chugunov Anton O. Chugunov Anton O. Chugunov Antonina A. Berkut Alexander S. Paramonov Mikhail A. Shulepko Matvey V. Fedin Michael G. Hanna Dimitri M. Kullmann Elena G. Bagryanskaya Alexander S. Arseniev Alexander S. Arseniev Mikhail P. Kirpichnikov Mikhail P. Kirpichnikov Ekaterina N. Lyukmanova Ekaterina N. Lyukmanova Alexander A. Vassilevski Alexander A. Vassilevski Zakhar O. Shenkarev Zakhar O. Shenkarev Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel Frontiers in Pharmacology channelopathies sodium channel gating modifier NMR spectroscopy cell-free expression combinatorial selective labeling |
author_facet |
Mikhail Yu. Myshkin Roope Männikkö Olesya A. Krumkacheva Dmitrii S. Kulbatskii Anton O. Chugunov Anton O. Chugunov Anton O. Chugunov Antonina A. Berkut Alexander S. Paramonov Mikhail A. Shulepko Matvey V. Fedin Michael G. Hanna Dimitri M. Kullmann Elena G. Bagryanskaya Alexander S. Arseniev Alexander S. Arseniev Mikhail P. Kirpichnikov Mikhail P. Kirpichnikov Ekaterina N. Lyukmanova Ekaterina N. Lyukmanova Alexander A. Vassilevski Alexander A. Vassilevski Zakhar O. Shenkarev Zakhar O. Shenkarev |
author_sort |
Mikhail Yu. Myshkin |
title |
Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel |
title_short |
Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel |
title_full |
Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel |
title_fullStr |
Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel |
title_full_unstemmed |
Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel |
title_sort |
cell-free expression of sodium channel domains for pharmacology studies. noncanonical spider toxin binding site in the second voltage-sensing domain of human nav1.4 channel |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Pharmacology |
issn |
1663-9812 |
publishDate |
2019-09-01 |
description |
Voltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel NaV1.4 trigger leak (gating pore) currents and cause hypokalemic and normokalemic periodic paralyses. Previously, we have shown that the gating modifier toxin Hm-3 from the crab spider Heriaeus melloteei binds to the S3-S4 extracellular loop in VSD-I of NaV1.4 channel and inhibits gating pore currents through the channel with mutations in VSD-I. Here, we report that Hm-3 also inhibits gating pore currents through the same channel with the R675G mutation in VSD-II. To investigate the molecular basis of Hm-3 interaction with VSD-II, we produced the corresponding 554-696 fragment of NaV1.4 in a continuous exchange cell-free expression system based on the Escherichia coli S30 extract. We then performed a combined nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy study of isolated VSD-II in zwitterionic dodecylphosphocholine/lauryldimethylamine-N-oxide or dodecylphosphocholine micelles. To speed up the assignment of backbone resonances, five selectively 13C,15N-labeled VSD-II samples were produced in accordance with specially calculated combinatorial scheme. This labeling approach provides assignment for ∼50% of the backbone. Obtained NMR and electron paramagnetic resonance data revealed correct secondary structure, quasi-native VSD-II fold, and enhanced ps–ns timescale dynamics in the micelle-solubilized domain. We modeled the structure of the VSD-II/Hm-3 complex by protein–protein docking involving binding surfaces mapped by NMR. Hm-3 binds to VSDs I and II using different modes. In VSD-II, the protruding ß-hairpin of Hm-3 interacts with the S1-S2 extracellular loop, and the complex is stabilized by ionic interactions between the positively charged toxin residue K24 and the negatively charged channel residues E604 or D607. We suggest that Hm-3 binding to these charged groups inhibits voltage sensor transition to the activated state and blocks the depolarization-activated gating pore currents. Our results indicate that spider toxins represent a useful hit for periodic paralyses therapy development and may have multiple structurally different binding sites within one NaV molecule. |
topic |
channelopathies sodium channel gating modifier NMR spectroscopy cell-free expression combinatorial selective labeling |
url |
https://www.frontiersin.org/article/10.3389/fphar.2019.00953/full |
work_keys_str_mv |
AT mikhailyumyshkin cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT roopemannikko cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT olesyaakrumkacheva cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT dmitriiskulbatskii cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT antonochugunov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT antonochugunov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT antonochugunov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT antoninaaberkut cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT alexandersparamonov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT mikhailashulepko cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT matveyvfedin cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT michaelghanna cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT dimitrimkullmann cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT elenagbagryanskaya cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT alexandersarseniev cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT alexandersarseniev cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT mikhailpkirpichnikov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT mikhailpkirpichnikov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT ekaterinanlyukmanova cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT ekaterinanlyukmanova cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT alexanderavassilevski cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT alexanderavassilevski cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT zakharoshenkarev cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel AT zakharoshenkarev cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel |
_version_ |
1725287444318781440 |
spelling |
doaj-4464bf84a7ef4033a00db58a1fd06aed2020-11-25T00:41:03ZengFrontiers Media S.A.Frontiers in Pharmacology1663-98122019-09-011010.3389/fphar.2019.00953468032Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 ChannelMikhail Yu. Myshkin0Roope Männikkö1Olesya A. Krumkacheva2Dmitrii S. Kulbatskii3Anton O. Chugunov4Anton O. Chugunov5Anton O. Chugunov6Antonina A. Berkut7Alexander S. Paramonov8Mikhail A. Shulepko9Matvey V. Fedin10Michael G. Hanna11Dimitri M. Kullmann12Elena G. Bagryanskaya13Alexander S. Arseniev14Alexander S. Arseniev15Mikhail P. Kirpichnikov16Mikhail P. Kirpichnikov17Ekaterina N. Lyukmanova18Ekaterina N. Lyukmanova19Alexander A. Vassilevski20Alexander A. Vassilevski21Zakhar O. Shenkarev22Zakhar O. Shenkarev23Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaMRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United KingdomInternational Tomography Center SB RAS, Novosibirsk, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaInternational Laboratory for Supercomputer Atomistic Modelling and Multi-scale Analysis, National Research University Higher School of Economics, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaInternational Tomography Center SB RAS, Novosibirsk, RussiaMRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United KingdomDepartment of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United KingdomN.N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaFaculty of Biology, Lomonosov Moscow State University, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaVoltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel NaV1.4 trigger leak (gating pore) currents and cause hypokalemic and normokalemic periodic paralyses. Previously, we have shown that the gating modifier toxin Hm-3 from the crab spider Heriaeus melloteei binds to the S3-S4 extracellular loop in VSD-I of NaV1.4 channel and inhibits gating pore currents through the channel with mutations in VSD-I. Here, we report that Hm-3 also inhibits gating pore currents through the same channel with the R675G mutation in VSD-II. To investigate the molecular basis of Hm-3 interaction with VSD-II, we produced the corresponding 554-696 fragment of NaV1.4 in a continuous exchange cell-free expression system based on the Escherichia coli S30 extract. We then performed a combined nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy study of isolated VSD-II in zwitterionic dodecylphosphocholine/lauryldimethylamine-N-oxide or dodecylphosphocholine micelles. To speed up the assignment of backbone resonances, five selectively 13C,15N-labeled VSD-II samples were produced in accordance with specially calculated combinatorial scheme. This labeling approach provides assignment for ∼50% of the backbone. Obtained NMR and electron paramagnetic resonance data revealed correct secondary structure, quasi-native VSD-II fold, and enhanced ps–ns timescale dynamics in the micelle-solubilized domain. We modeled the structure of the VSD-II/Hm-3 complex by protein–protein docking involving binding surfaces mapped by NMR. Hm-3 binds to VSDs I and II using different modes. In VSD-II, the protruding ß-hairpin of Hm-3 interacts with the S1-S2 extracellular loop, and the complex is stabilized by ionic interactions between the positively charged toxin residue K24 and the negatively charged channel residues E604 or D607. We suggest that Hm-3 binding to these charged groups inhibits voltage sensor transition to the activated state and blocks the depolarization-activated gating pore currents. Our results indicate that spider toxins represent a useful hit for periodic paralyses therapy development and may have multiple structurally different binding sites within one NaV molecule.https://www.frontiersin.org/article/10.3389/fphar.2019.00953/fullchannelopathiessodium channelgating modifierNMR spectroscopycell-free expressioncombinatorial selective labeling |