Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel

Voltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains...

Full description

Bibliographic Details
Main Authors: Mikhail Yu. Myshkin, Roope Männikkö, Olesya A. Krumkacheva, Dmitrii S. Kulbatskii, Anton O. Chugunov, Antonina A. Berkut, Alexander S. Paramonov, Mikhail A. Shulepko, Matvey V. Fedin, Michael G. Hanna, Dimitri M. Kullmann, Elena G. Bagryanskaya, Alexander S. Arseniev, Mikhail P. Kirpichnikov, Ekaterina N. Lyukmanova, Alexander A. Vassilevski, Zakhar O. Shenkarev
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-09-01
Series:Frontiers in Pharmacology
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fphar.2019.00953/full
id doaj-4464bf84a7ef4033a00db58a1fd06aed
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Mikhail Yu. Myshkin
Roope Männikkö
Olesya A. Krumkacheva
Dmitrii S. Kulbatskii
Anton O. Chugunov
Anton O. Chugunov
Anton O. Chugunov
Antonina A. Berkut
Alexander S. Paramonov
Mikhail A. Shulepko
Matvey V. Fedin
Michael G. Hanna
Dimitri M. Kullmann
Elena G. Bagryanskaya
Alexander S. Arseniev
Alexander S. Arseniev
Mikhail P. Kirpichnikov
Mikhail P. Kirpichnikov
Ekaterina N. Lyukmanova
Ekaterina N. Lyukmanova
Alexander A. Vassilevski
Alexander A. Vassilevski
Zakhar O. Shenkarev
Zakhar O. Shenkarev
spellingShingle Mikhail Yu. Myshkin
Roope Männikkö
Olesya A. Krumkacheva
Dmitrii S. Kulbatskii
Anton O. Chugunov
Anton O. Chugunov
Anton O. Chugunov
Antonina A. Berkut
Alexander S. Paramonov
Mikhail A. Shulepko
Matvey V. Fedin
Michael G. Hanna
Dimitri M. Kullmann
Elena G. Bagryanskaya
Alexander S. Arseniev
Alexander S. Arseniev
Mikhail P. Kirpichnikov
Mikhail P. Kirpichnikov
Ekaterina N. Lyukmanova
Ekaterina N. Lyukmanova
Alexander A. Vassilevski
Alexander A. Vassilevski
Zakhar O. Shenkarev
Zakhar O. Shenkarev
Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel
Frontiers in Pharmacology
channelopathies
sodium channel
gating modifier
NMR spectroscopy
cell-free expression
combinatorial selective labeling
author_facet Mikhail Yu. Myshkin
Roope Männikkö
Olesya A. Krumkacheva
Dmitrii S. Kulbatskii
Anton O. Chugunov
Anton O. Chugunov
Anton O. Chugunov
Antonina A. Berkut
Alexander S. Paramonov
Mikhail A. Shulepko
Matvey V. Fedin
Michael G. Hanna
Dimitri M. Kullmann
Elena G. Bagryanskaya
Alexander S. Arseniev
Alexander S. Arseniev
Mikhail P. Kirpichnikov
Mikhail P. Kirpichnikov
Ekaterina N. Lyukmanova
Ekaterina N. Lyukmanova
Alexander A. Vassilevski
Alexander A. Vassilevski
Zakhar O. Shenkarev
Zakhar O. Shenkarev
author_sort Mikhail Yu. Myshkin
title Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel
title_short Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel
title_full Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel
title_fullStr Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel
title_full_unstemmed Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 Channel
title_sort cell-free expression of sodium channel domains for pharmacology studies. noncanonical spider toxin binding site in the second voltage-sensing domain of human nav1.4 channel
publisher Frontiers Media S.A.
series Frontiers in Pharmacology
issn 1663-9812
publishDate 2019-09-01
description Voltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel NaV1.4 trigger leak (gating pore) currents and cause hypokalemic and normokalemic periodic paralyses. Previously, we have shown that the gating modifier toxin Hm-3 from the crab spider Heriaeus melloteei binds to the S3-S4 extracellular loop in VSD-I of NaV1.4 channel and inhibits gating pore currents through the channel with mutations in VSD-I. Here, we report that Hm-3 also inhibits gating pore currents through the same channel with the R675G mutation in VSD-II. To investigate the molecular basis of Hm-3 interaction with VSD-II, we produced the corresponding 554-696 fragment of NaV1.4 in a continuous exchange cell-free expression system based on the Escherichia coli S30 extract. We then performed a combined nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy study of isolated VSD-II in zwitterionic dodecylphosphocholine/lauryldimethylamine-N-oxide or dodecylphosphocholine micelles. To speed up the assignment of backbone resonances, five selectively 13C,15N-labeled VSD-II samples were produced in accordance with specially calculated combinatorial scheme. This labeling approach provides assignment for ∼50% of the backbone. Obtained NMR and electron paramagnetic resonance data revealed correct secondary structure, quasi-native VSD-II fold, and enhanced ps–ns timescale dynamics in the micelle-solubilized domain. We modeled the structure of the VSD-II/Hm-3 complex by protein–protein docking involving binding surfaces mapped by NMR. Hm-3 binds to VSDs I and II using different modes. In VSD-II, the protruding ß-hairpin of Hm-3 interacts with the S1-S2 extracellular loop, and the complex is stabilized by ionic interactions between the positively charged toxin residue K24 and the negatively charged channel residues E604 or D607. We suggest that Hm-3 binding to these charged groups inhibits voltage sensor transition to the activated state and blocks the depolarization-activated gating pore currents. Our results indicate that spider toxins represent a useful hit for periodic paralyses therapy development and may have multiple structurally different binding sites within one NaV molecule.
topic channelopathies
sodium channel
gating modifier
NMR spectroscopy
cell-free expression
combinatorial selective labeling
url https://www.frontiersin.org/article/10.3389/fphar.2019.00953/full
work_keys_str_mv AT mikhailyumyshkin cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT roopemannikko cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT olesyaakrumkacheva cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT dmitriiskulbatskii cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT antonochugunov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT antonochugunov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT antonochugunov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT antoninaaberkut cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT alexandersparamonov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT mikhailashulepko cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT matveyvfedin cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT michaelghanna cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT dimitrimkullmann cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT elenagbagryanskaya cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT alexandersarseniev cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT alexandersarseniev cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT mikhailpkirpichnikov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT mikhailpkirpichnikov cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT ekaterinanlyukmanova cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT ekaterinanlyukmanova cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT alexanderavassilevski cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT alexanderavassilevski cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT zakharoshenkarev cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
AT zakharoshenkarev cellfreeexpressionofsodiumchanneldomainsforpharmacologystudiesnoncanonicalspidertoxinbindingsiteinthesecondvoltagesensingdomainofhumannav14channel
_version_ 1725287444318781440
spelling doaj-4464bf84a7ef4033a00db58a1fd06aed2020-11-25T00:41:03ZengFrontiers Media S.A.Frontiers in Pharmacology1663-98122019-09-011010.3389/fphar.2019.00953468032Cell-Free Expression of Sodium Channel Domains for Pharmacology Studies. Noncanonical Spider Toxin Binding Site in the Second Voltage-Sensing Domain of Human Nav1.4 ChannelMikhail Yu. Myshkin0Roope Männikkö1Olesya A. Krumkacheva2Dmitrii S. Kulbatskii3Anton O. Chugunov4Anton O. Chugunov5Anton O. Chugunov6Antonina A. Berkut7Alexander S. Paramonov8Mikhail A. Shulepko9Matvey V. Fedin10Michael G. Hanna11Dimitri M. Kullmann12Elena G. Bagryanskaya13Alexander S. Arseniev14Alexander S. Arseniev15Mikhail P. Kirpichnikov16Mikhail P. Kirpichnikov17Ekaterina N. Lyukmanova18Ekaterina N. Lyukmanova19Alexander A. Vassilevski20Alexander A. Vassilevski21Zakhar O. Shenkarev22Zakhar O. Shenkarev23Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaMRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United KingdomInternational Tomography Center SB RAS, Novosibirsk, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaInternational Laboratory for Supercomputer Atomistic Modelling and Multi-scale Analysis, National Research University Higher School of Economics, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaInternational Tomography Center SB RAS, Novosibirsk, RussiaMRC Centre for Neuromuscular Diseases, Department of Molecular Neuroscience, UCL Institute of Neurology, London, United KingdomDepartment of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, United KingdomN.N.Voroztsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaFaculty of Biology, Lomonosov Moscow State University, Moscow, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaShemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, RussiaSchool of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny, RussiaVoltage-gated sodium (NaV) channels are essential for the normal functioning of cardiovascular, muscular, and nervous systems. These channels have modular organization; the central pore domain allows current flow and provides ion selectivity, whereas four peripherally located voltage-sensing domains (VSDs-I/IV) are needed for voltage-dependent gating. Mutations in the S4 voltage-sensing segments of VSDs in the skeletal muscle channel NaV1.4 trigger leak (gating pore) currents and cause hypokalemic and normokalemic periodic paralyses. Previously, we have shown that the gating modifier toxin Hm-3 from the crab spider Heriaeus melloteei binds to the S3-S4 extracellular loop in VSD-I of NaV1.4 channel and inhibits gating pore currents through the channel with mutations in VSD-I. Here, we report that Hm-3 also inhibits gating pore currents through the same channel with the R675G mutation in VSD-II. To investigate the molecular basis of Hm-3 interaction with VSD-II, we produced the corresponding 554-696 fragment of NaV1.4 in a continuous exchange cell-free expression system based on the Escherichia coli S30 extract. We then performed a combined nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy study of isolated VSD-II in zwitterionic dodecylphosphocholine/lauryldimethylamine-N-oxide or dodecylphosphocholine micelles. To speed up the assignment of backbone resonances, five selectively 13C,15N-labeled VSD-II samples were produced in accordance with specially calculated combinatorial scheme. This labeling approach provides assignment for ∼50% of the backbone. Obtained NMR and electron paramagnetic resonance data revealed correct secondary structure, quasi-native VSD-II fold, and enhanced ps–ns timescale dynamics in the micelle-solubilized domain. We modeled the structure of the VSD-II/Hm-3 complex by protein–protein docking involving binding surfaces mapped by NMR. Hm-3 binds to VSDs I and II using different modes. In VSD-II, the protruding ß-hairpin of Hm-3 interacts with the S1-S2 extracellular loop, and the complex is stabilized by ionic interactions between the positively charged toxin residue K24 and the negatively charged channel residues E604 or D607. We suggest that Hm-3 binding to these charged groups inhibits voltage sensor transition to the activated state and blocks the depolarization-activated gating pore currents. Our results indicate that spider toxins represent a useful hit for periodic paralyses therapy development and may have multiple structurally different binding sites within one NaV molecule.https://www.frontiersin.org/article/10.3389/fphar.2019.00953/fullchannelopathiessodium channelgating modifierNMR spectroscopycell-free expressioncombinatorial selective labeling