Herramienta alternativa para la clasificación de células cervicales utilizando solo rasgos del núcleo

<p>El cáncer de cérvix uterino representa una de las mayores amenazas de muerte por cáncer entre las mujeres. Con el avance continuo en la medicina y la tecnología, las muertes por esta enfermedad han disminuido significativamente. Las investigaciones referentes a este tema han podido determin...

Full description

Bibliographic Details
Main Authors: Solangel Rodríguez Vázquez, Andy Vidal Martínez Borges
Format: Article
Language:English
Published: ECIMED 2016-07-01
Series:Revista Cubana de Informática Médica
Online Access:http://revinformatica.sld.cu/index.php/rcim/article/view/152
Description
Summary:<p>El cáncer de cérvix uterino representa una de las mayores amenazas de muerte por cáncer entre las mujeres. Con el avance continuo en la medicina y la tecnología, las muertes por esta enfermedad han disminuido significativamente. Las investigaciones referentes a este tema han podido determinar síntomas claves que permiten detectar a tiempo esta enfermedad para darle un tratamiento oportuno. La citología convencional es una de las técnicas más utilizadas, siendo ampliamente aceptada, de bajo costo, y con mecanismos de control. Con el objetivo de aliviar la carga de trabajo a los especialistas, algunos investigadores han propuesto el desarrollo de herramientas de visión computacional para detectar y clasificar las transformaciones en las células de la región del cuello uterino. La presente investigación tiene como objetivo proveer a los investigadores de una herramienta de clasificación automática, aplicable a las condiciones existentes en los centros médicos y de investigación del país. Esta herramienta debe ser capaz de clasificar las células del cuello del útero, basándose solamente en las características extraídas de la región del núcleo y sin utilizar las características del citoplasma, de manera que se reduzca la tasa de falsos negativos en la prueba de Papanicolaou. A partir del estudio realizado, se obtuvo una herramienta haciendo uso de la técnica k-vecinos más cercanos con la distancia manhattan, el cual mostró un alto desempeño manteniendo valores de AUC superiores al 91% y llegando hasta un 97.1% con respecto a los clasificadores SVM y RBF Network, los que también fueron analizados.</p><p>Palabras Clave: cáncer de cérvix uterino, células del cuello uterino, clasificación de células, kNN, núcleos celulares, SVM, distancias.</p>
ISSN:1684-1859