Developing a Coordinated Signal Control System for Urban Ring Road Under the Vehicle-Infrastructure Connected Environment

Ring roads have been widely built in many cities, especially in the central districts with excessively heavy traffic demands and frequently generated congestion. In order to improve the operations and reduce traffic delay on urban ring roads, this paper developed a coordinated signal control system...

Full description

Bibliographic Details
Main Authors: Changxi Ma, Wei Hao, Aobo Wang, Hongxing Zhao
Format: Article
Language:English
Published: IEEE 2018-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/8463460/
Description
Summary:Ring roads have been widely built in many cities, especially in the central districts with excessively heavy traffic demands and frequently generated congestion. In order to improve the operations and reduce traffic delay on urban ring roads, this paper developed a coordinated signal control system for urban ring roads under vehicle-infrastructure connected environment. The speed guidance would be provided to motorists utilizing four sub-systems including detection, communication, signal control, and expected speed calculation in the system. The signal timing parameters such as cycle length, green split, and offset, would be adjusted based on the artificial bee colony-shuffled frog leaping algorithm. The proposed signal control system had been test using VISSIM simulation model and the simulation results showed that the average delay, number of stops, and queue length were significantly improved compared with the conventional traffic control system.
ISSN:2169-3536