Riemann Boundary Value Problem for Triharmonic Equation in Higher Space

We mainly deal with the boundary value problem for triharmonic function with value in a universal Clifford algebra: Δ3[u](x)=0, x∈Rn∖∂Ω, u+(x)=u-(x)G(x)+g(x), x∈∂Ω, (Dju)+(x)=(Dju)-(x)Aj+fj(x), x∈∂Ω, u(∞)=0, where (j=1,…,5)  ∂Ω is a Lyapunov surface in Rn, D=∑k=1nek(∂/∂xk) is the Dirac operator, and...

Full description

Bibliographic Details
Main Author: Longfei Gu
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/415052

Similar Items