Geometric Invariants of Surjective Isometries between Unit Spheres

In this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>,</m...

Full description

Bibliographic Details
Main Authors: Almudena Campos-Jiménez, Francisco Javier García-Pacheco
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/18/2346
id doaj-44412dba81ac446d85c700703420b8da
record_format Article
spelling doaj-44412dba81ac446d85c700703420b8da2021-09-26T00:38:46ZengMDPI AGMathematics2227-73902021-09-0192346234610.3390/math9182346Geometric Invariants of Surjective Isometries between Unit SpheresAlmudena Campos-Jiménez0Francisco Javier García-Pacheco1Department of Mathematics, College of Engineering, University of Cadiz, 11519 Puerto Real, Cádiz, SpainDepartment of Mathematics, College of Engineering, University of Cadiz, 11519 Puerto Real, Cádiz, SpainIn this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>,</mo><mi>Y</mi></mrow></semantics></math></inline-formula> be Banach spaces and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>:</mo><msub><mi>S</mi><mi>X</mi></msub><mo>→</mo><msub><mi>S</mi><mi>Y</mi></msub></mrow></semantics></math></inline-formula> be a surjective isometry. The most relevant geometric invariants under surjective isometries such as <i>T</i> are known to be the starlike sets, the maximal faces of the unit ball, and the antipodal points (in the finite-dimensional case). Here, new geometric invariants are found, such as almost flat sets, flat sets, starlike compatible sets, and starlike generated sets. Also, in this work, it is proved that if <i>F</i> is a maximal face of the unit ball containing inner points, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>(</mo><mo>−</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>T</mi><mo>(</mo><mi>F</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We also show that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo></mrow></semantics></math></inline-formula> is a non-trivial segment contained in the unit sphere such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>(</mo><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>)</mo></mrow></semantics></math></inline-formula> is convex, then <i>T</i> is affine on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo></mrow></semantics></math></inline-formula>. As a consequence, <i>T</i> is affine on every segment that is a maximal face. On the other hand, we introduce a new geometric property called property <i>P</i>, which states that every face of the unit ball is the intersection of all maximal faces containing it. This property has turned out to be, in a implicit way, a very useful tool to show that many Banach spaces enjoy the Mazur-Ulam property. Following this line, in this manuscript it is proved that every reflexive or separable Banach space with dimension greater than or equal to 2 can be equivalently renormed to fail property <i>P</i>.https://www.mdpi.com/2227-7390/9/18/2346tingley problemMazur-Ulam propertysurjective isometryextension isometriesgeometric invariantsextreme point
collection DOAJ
language English
format Article
sources DOAJ
author Almudena Campos-Jiménez
Francisco Javier García-Pacheco
spellingShingle Almudena Campos-Jiménez
Francisco Javier García-Pacheco
Geometric Invariants of Surjective Isometries between Unit Spheres
Mathematics
tingley problem
Mazur-Ulam property
surjective isometry
extension isometries
geometric invariants
extreme point
author_facet Almudena Campos-Jiménez
Francisco Javier García-Pacheco
author_sort Almudena Campos-Jiménez
title Geometric Invariants of Surjective Isometries between Unit Spheres
title_short Geometric Invariants of Surjective Isometries between Unit Spheres
title_full Geometric Invariants of Surjective Isometries between Unit Spheres
title_fullStr Geometric Invariants of Surjective Isometries between Unit Spheres
title_full_unstemmed Geometric Invariants of Surjective Isometries between Unit Spheres
title_sort geometric invariants of surjective isometries between unit spheres
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-09-01
description In this paper we provide new geometric invariants of surjective isometries between unit spheres of Banach spaces. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>,</mo><mi>Y</mi></mrow></semantics></math></inline-formula> be Banach spaces and let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>:</mo><msub><mi>S</mi><mi>X</mi></msub><mo>→</mo><msub><mi>S</mi><mi>Y</mi></msub></mrow></semantics></math></inline-formula> be a surjective isometry. The most relevant geometric invariants under surjective isometries such as <i>T</i> are known to be the starlike sets, the maximal faces of the unit ball, and the antipodal points (in the finite-dimensional case). Here, new geometric invariants are found, such as almost flat sets, flat sets, starlike compatible sets, and starlike generated sets. Also, in this work, it is proved that if <i>F</i> is a maximal face of the unit ball containing inner points, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>(</mo><mo>−</mo><mi>F</mi><mo>)</mo><mo>=</mo><mo>−</mo><mi>T</mi><mo>(</mo><mi>F</mi><mo>)</mo></mrow></semantics></math></inline-formula>. We also show that if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo></mrow></semantics></math></inline-formula> is a non-trivial segment contained in the unit sphere such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>(</mo><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo><mo>)</mo></mrow></semantics></math></inline-formula> is convex, then <i>T</i> is affine on <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>[</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>]</mo></mrow></semantics></math></inline-formula>. As a consequence, <i>T</i> is affine on every segment that is a maximal face. On the other hand, we introduce a new geometric property called property <i>P</i>, which states that every face of the unit ball is the intersection of all maximal faces containing it. This property has turned out to be, in a implicit way, a very useful tool to show that many Banach spaces enjoy the Mazur-Ulam property. Following this line, in this manuscript it is proved that every reflexive or separable Banach space with dimension greater than or equal to 2 can be equivalently renormed to fail property <i>P</i>.
topic tingley problem
Mazur-Ulam property
surjective isometry
extension isometries
geometric invariants
extreme point
url https://www.mdpi.com/2227-7390/9/18/2346
work_keys_str_mv AT almudenacamposjimenez geometricinvariantsofsurjectiveisometriesbetweenunitspheres
AT franciscojaviergarciapacheco geometricinvariantsofsurjectiveisometriesbetweenunitspheres
_version_ 1716870157944487936