FPGAN: An FPGA Accelerator for Graph Attention Networks With Software and Hardware Co-Optimization
The Graph Attention Networks (GATs) exhibit outstanding performance in multiple authoritative node classification benchmark tests (including transductive and inductive). The purpose of this research is to implement an FPGA-based accelerator called FPGAN for graph attention networks that achieves sig...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2020-01-01
|
Series: | IEEE Access |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/9195849/ |