Correction: Zhu, Q., et al. Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning. <i>Remote Sensing</i> 2019, <i>11</i>, 2001

The authors wish to make the following corrections to this paper[...]

Bibliographic Details
Main Authors: Qing Zhu, Fang Shen, Pei Shang, Yanqun Pan, Mengyu Li
Format: Article
Language:English
Published: MDPI AG 2020-01-01
Series:Remote Sensing
Subjects:
n/a
Online Access:https://www.mdpi.com/2072-4292/12/3/364
id doaj-4408a8b510d84f1c9aeba65e7144a532
record_format Article
spelling doaj-4408a8b510d84f1c9aeba65e7144a5322020-11-25T01:12:57ZengMDPI AGRemote Sensing2072-42922020-01-0112336410.3390/rs12030364rs12030364Correction: Zhu, Q., et al. Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning. <i>Remote Sensing</i> 2019, <i>11</i>, 2001Qing Zhu0Fang Shen1Pei Shang2Yanqun Pan3Mengyu Li4State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, ChinaState Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, ChinaState Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, ChinaState Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, ChinaState Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, ChinaThe authors wish to make the following corrections to this paper[...]https://www.mdpi.com/2072-4292/12/3/364n/a
collection DOAJ
language English
format Article
sources DOAJ
author Qing Zhu
Fang Shen
Pei Shang
Yanqun Pan
Mengyu Li
spellingShingle Qing Zhu
Fang Shen
Pei Shang
Yanqun Pan
Mengyu Li
Correction: Zhu, Q., et al. Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning. <i>Remote Sensing</i> 2019, <i>11</i>, 2001
Remote Sensing
n/a
author_facet Qing Zhu
Fang Shen
Pei Shang
Yanqun Pan
Mengyu Li
author_sort Qing Zhu
title Correction: Zhu, Q., et al. Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning. <i>Remote Sensing</i> 2019, <i>11</i>, 2001
title_short Correction: Zhu, Q., et al. Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning. <i>Remote Sensing</i> 2019, <i>11</i>, 2001
title_full Correction: Zhu, Q., et al. Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning. <i>Remote Sensing</i> 2019, <i>11</i>, 2001
title_fullStr Correction: Zhu, Q., et al. Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning. <i>Remote Sensing</i> 2019, <i>11</i>, 2001
title_full_unstemmed Correction: Zhu, Q., et al. Hyperspectral Remote Sensing of Phytoplankton Species Composition Based on Transfer Learning. <i>Remote Sensing</i> 2019, <i>11</i>, 2001
title_sort correction: zhu, q., et al. hyperspectral remote sensing of phytoplankton species composition based on transfer learning. <i>remote sensing</i> 2019, <i>11</i>, 2001
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2020-01-01
description The authors wish to make the following corrections to this paper[...]
topic n/a
url https://www.mdpi.com/2072-4292/12/3/364
work_keys_str_mv AT qingzhu correctionzhuqetalhyperspectralremotesensingofphytoplanktonspeciescompositionbasedontransferlearningiremotesensingi2019i11i2001
AT fangshen correctionzhuqetalhyperspectralremotesensingofphytoplanktonspeciescompositionbasedontransferlearningiremotesensingi2019i11i2001
AT peishang correctionzhuqetalhyperspectralremotesensingofphytoplanktonspeciescompositionbasedontransferlearningiremotesensingi2019i11i2001
AT yanqunpan correctionzhuqetalhyperspectralremotesensingofphytoplanktonspeciescompositionbasedontransferlearningiremotesensingi2019i11i2001
AT mengyuli correctionzhuqetalhyperspectralremotesensingofphytoplanktonspeciescompositionbasedontransferlearningiremotesensingi2019i11i2001
_version_ 1725164154934788096