Summary: | Suwicha Jirayucharoensak,1,2 Pasin Israsena,1 Setha Pan-ngum,2 Solaphat Hemrungrojn,3 Michael Maes3 1Neural Signal Processing Research Team, Artificial Intelligence Research Unit, National Electronics and Computer Technology Center, Pathum Thani 12120, Thailand; 2Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; 3Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, ThailandIntroduction: This study examines the clinical efficacy of a game-based neurofeedback training (NFT) system to enhance cognitive performance in patients with amnestic mild cognitive impairment (aMCI) and healthy elderly subjects. The NFT system includes five games designed to improve attention span and cognitive performance. The system estimates attention levels by investigating the power spectrum of Beta and Alpha bands.Methods: We recruited 65 women with aMCI and 54 healthy elderly women. All participants were treated with care as usual (CAU); 58 were treated with CAU + NFT (20 sessions of 30 minutes each, 2–3 sessions per week), 36 with CAU + exergame-based training, while 25 patients had only CAU. Cognitive functions were assessed using the Cambridge Neuropsychological Test Automated Battery both before and after treatment.Results: NFT significantly improved rapid visual processing and spatial working memory (SWM), including strategy, when compared with exergame training and no active treatment. aMCI was characterized by impairments in SWM (including strategy), pattern recognition memory, and delayed matching to samples.Conclusion: In conclusion, treatment with NFT improves sustained attention and SWM. Nevertheless, NFT had no significant effect on pattern recognition memory and short-term visual memory, which are the other hallmarks of aMCI. The NFT system used here may selectively improve sustained attention, strategy, and executive functions, but not other cognitive impairments, which characterize aMCI in women.Keywords: amnestic mild cognitive impairment, neurofeedback, cognition, executive functions, aging, serious gaming, brain–computer interface
|