Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy

Epilepsy detection from electrical characteristics of EEG signals obtained from the brain of undergone subject is a challenge task for both research and neurologist due to the non-stationary and chaotic nature of EEG signals. As epileptic EEG signals contain huge fluctuating information about the fu...

Full description

Bibliographic Details
Main Authors: Supriya Supriya, Siuly Siuly, Hua Wang, Jinli Cao, Yanchun Zhang
Format: Article
Language:English
Published: IEEE 2016-01-01
Series:IEEE Access
Subjects:
EEG
KNN
Online Access:https://ieeexplore.ieee.org/document/7572884/
id doaj-43e411fd036b49d5ad918eb65e998605
record_format Article
spelling doaj-43e411fd036b49d5ad918eb65e9986052021-03-29T19:42:28ZengIEEEIEEE Access2169-35362016-01-0146554656610.1109/ACCESS.2016.26122427572884Weighted Visibility Graph With Complex Network Features in the Detection of EpilepsySupriya Supriya0https://orcid.org/0000-0002-3124-1187Siuly Siuly1Hua Wang2Jinli Cao3Yanchun Zhang4Centre for Applied Informatics, Victoria University, Melbourne, Victoria, AustraliaCentre for Applied Informatics, Victoria University, Melbourne, Victoria, AustraliaCentre for Applied Informatics, Victoria University, Melbourne, Victoria, AustraliaDepartment of Computer Science and Computer Engineering, La Trobe University, Melbourne, VIC, AustraliaCentre for Applied Informatics, Victoria University, Melbourne, Victoria, AustraliaEpilepsy detection from electrical characteristics of EEG signals obtained from the brain of undergone subject is a challenge task for both research and neurologist due to the non-stationary and chaotic nature of EEG signals. As epileptic EEG signals contain huge fluctuating information about the functional behavior of the brain, it is hard to distinguish the fundamental dynamic, complex network of EEG signals without considering the strength among the nodes as they are connected with each other on the basis of these strengths. The prior research on natural visibility graph did not consider this issue in epileptic seizure, although it is a very important key point to have representative information from the signals. Hence, this paper aims to introduce a new idea for epilepsy detection using complex network statistical properties by measuring different strengths of the edges in natural visibility graph theory, which is considered as weight. Thus, the proposed method is named “weighted visibility graph”. In this proposed method, first, the epileptic EEG signals are transformed into complex network and then two important statistical properties of a network such as modularity and average weighted degree used for extracting the imperative characteristics from a network of EEG signals. After that, the extracted features are evaluated by two modern machine-learning classifiers such as, support vector machine with a different kernel function and k-nearest neighbor. The experimental results demonstrate that the combined effect of both features is valuable for network metrics to characterize the EEG time series signals in case of weighted complex network generating up to 100% classification accuracy.https://ieeexplore.ieee.org/document/7572884/Average weighted degreecomplex networkEEGEpilepsyKNNmodularity
collection DOAJ
language English
format Article
sources DOAJ
author Supriya Supriya
Siuly Siuly
Hua Wang
Jinli Cao
Yanchun Zhang
spellingShingle Supriya Supriya
Siuly Siuly
Hua Wang
Jinli Cao
Yanchun Zhang
Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
IEEE Access
Average weighted degree
complex network
EEG
Epilepsy
KNN
modularity
author_facet Supriya Supriya
Siuly Siuly
Hua Wang
Jinli Cao
Yanchun Zhang
author_sort Supriya Supriya
title Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
title_short Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
title_full Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
title_fullStr Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
title_full_unstemmed Weighted Visibility Graph With Complex Network Features in the Detection of Epilepsy
title_sort weighted visibility graph with complex network features in the detection of epilepsy
publisher IEEE
series IEEE Access
issn 2169-3536
publishDate 2016-01-01
description Epilepsy detection from electrical characteristics of EEG signals obtained from the brain of undergone subject is a challenge task for both research and neurologist due to the non-stationary and chaotic nature of EEG signals. As epileptic EEG signals contain huge fluctuating information about the functional behavior of the brain, it is hard to distinguish the fundamental dynamic, complex network of EEG signals without considering the strength among the nodes as they are connected with each other on the basis of these strengths. The prior research on natural visibility graph did not consider this issue in epileptic seizure, although it is a very important key point to have representative information from the signals. Hence, this paper aims to introduce a new idea for epilepsy detection using complex network statistical properties by measuring different strengths of the edges in natural visibility graph theory, which is considered as weight. Thus, the proposed method is named “weighted visibility graph”. In this proposed method, first, the epileptic EEG signals are transformed into complex network and then two important statistical properties of a network such as modularity and average weighted degree used for extracting the imperative characteristics from a network of EEG signals. After that, the extracted features are evaluated by two modern machine-learning classifiers such as, support vector machine with a different kernel function and k-nearest neighbor. The experimental results demonstrate that the combined effect of both features is valuable for network metrics to characterize the EEG time series signals in case of weighted complex network generating up to 100% classification accuracy.
topic Average weighted degree
complex network
EEG
Epilepsy
KNN
modularity
url https://ieeexplore.ieee.org/document/7572884/
work_keys_str_mv AT supriyasupriya weightedvisibilitygraphwithcomplexnetworkfeaturesinthedetectionofepilepsy
AT siulysiuly weightedvisibilitygraphwithcomplexnetworkfeaturesinthedetectionofepilepsy
AT huawang weightedvisibilitygraphwithcomplexnetworkfeaturesinthedetectionofepilepsy
AT jinlicao weightedvisibilitygraphwithcomplexnetworkfeaturesinthedetectionofepilepsy
AT yanchunzhang weightedvisibilitygraphwithcomplexnetworkfeaturesinthedetectionofepilepsy
_version_ 1724195817154150400