Development of amoxicillin resistance in Escherichia coli after exposure to remnants of a non-related phagemid-containing E. coli: an exploratory study
Abstract Objective To determine the effect of exposure to remnants of a phagemid-containing E. coli, killed by treatment with a propanol-based hand rub, on antimicrobial resistance in E. coli isolates. Methods An in vitro model was developed in which a clinical E. coli isolate (EUR1) was exposed to...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2020-03-01
|
Series: | Antimicrobial Resistance and Infection Control |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1186/s13756-020-00708-7 |
id |
doaj-43d9df3d6b564470a4fad2012c14c0b7 |
---|---|
record_format |
Article |
spelling |
doaj-43d9df3d6b564470a4fad2012c14c0b72020-11-25T03:32:10ZengBMCAntimicrobial Resistance and Infection Control2047-29942020-03-019111010.1186/s13756-020-00708-7Development of amoxicillin resistance in Escherichia coli after exposure to remnants of a non-related phagemid-containing E. coli: an exploratory studyJoep J. J. M. Stohr0Marjolein F. Q. Kluytmans-van den Bergh1Carlo J. M. M. Verhulst2John W. A. Rossen3Jan A. J. W. Kluytmans4Department of Infection Control, Amphia HospitalDepartment of Infection Control, Amphia HospitalDepartment of Infection Control, Amphia HospitalDepartment of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center GroningenDepartment of Infection Control, Amphia HospitalAbstract Objective To determine the effect of exposure to remnants of a phagemid-containing E. coli, killed by treatment with a propanol-based hand rub, on antimicrobial resistance in E. coli isolates. Methods An in vitro model was developed in which a clinical E. coli isolate (EUR1) was exposed to remnants of an E. coli K-12 strain containing a phagemid (pBS-E12) strain treated with Sterillium®. A series of 200 experiments was performed using this in vitro model. As a control, a series of 400 experiments was performed where the EUR1 was exposed either to the remnants of an E. coli K-12 strain (not containing a phagemid) (E12) treated with Sterillium® (n = 200) or to dried Sterillium® only (n = 200). The number of experiments that showed growth of an amoxicillin-resistant EUR1 isolate was evaluated in all three groups. An additional 48 experiments were performed in which a different clinical E. coli isolate (EUR2) was exposed to remnants of the pBS-E12 treated with Sterillium®. Whole-genome sequencing and phenotypic testing for AmpC beta-lactamase production was performed to investigate the mechanism behind this resistance development. Results In 22 (11.0%) of 200 experiments in which the EUR1 isolate was exposed to remnants of a pBS-E12 an amoxicillin-resistant mutant isolate was obtained, as opposed to only 2 (1.0%) of 200 experiments involving the exposure of the EUR1 to Sterillium® only (risk difference: 10.0%; 95% CI 5.4–14.6%)) and 1 (0.5%) of 200 experiments involving the exposure of the EUR1 isolate to the remnants of the phagemid-free E12 (risk difference: 10.5%; 95% CI 6.1–14.9%). In 1 (2.1%) of the 48 experiments in which the EUR2 isolate was exposed to remnants of a pBS-E12 an amoxicillin-resistant mutant isolate was obtained. The development of resistance in all experiments was due to mutations in the promoter/attenuator region of the chromosomal AmpC beta-lactamase (cAmpC) gene leading to cAmpC hyperproduction. Conclusion Exposure of an E. coli isolate to another phagemid-containing E. coli that was treated with propanol-based hand rub increased the development of amoxicillin resistance. Although phagemids are cloning vectors that are not present in clinical isolates, this finding may have implications for hand disinfection practices in healthcare facilities.http://link.springer.com/article/10.1186/s13756-020-00708-7SterilliumAmpCAntimicrobial resistanceDisinfection |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Joep J. J. M. Stohr Marjolein F. Q. Kluytmans-van den Bergh Carlo J. M. M. Verhulst John W. A. Rossen Jan A. J. W. Kluytmans |
spellingShingle |
Joep J. J. M. Stohr Marjolein F. Q. Kluytmans-van den Bergh Carlo J. M. M. Verhulst John W. A. Rossen Jan A. J. W. Kluytmans Development of amoxicillin resistance in Escherichia coli after exposure to remnants of a non-related phagemid-containing E. coli: an exploratory study Antimicrobial Resistance and Infection Control Sterillium AmpC Antimicrobial resistance Disinfection |
author_facet |
Joep J. J. M. Stohr Marjolein F. Q. Kluytmans-van den Bergh Carlo J. M. M. Verhulst John W. A. Rossen Jan A. J. W. Kluytmans |
author_sort |
Joep J. J. M. Stohr |
title |
Development of amoxicillin resistance in Escherichia coli after exposure to remnants of a non-related phagemid-containing E. coli: an exploratory study |
title_short |
Development of amoxicillin resistance in Escherichia coli after exposure to remnants of a non-related phagemid-containing E. coli: an exploratory study |
title_full |
Development of amoxicillin resistance in Escherichia coli after exposure to remnants of a non-related phagemid-containing E. coli: an exploratory study |
title_fullStr |
Development of amoxicillin resistance in Escherichia coli after exposure to remnants of a non-related phagemid-containing E. coli: an exploratory study |
title_full_unstemmed |
Development of amoxicillin resistance in Escherichia coli after exposure to remnants of a non-related phagemid-containing E. coli: an exploratory study |
title_sort |
development of amoxicillin resistance in escherichia coli after exposure to remnants of a non-related phagemid-containing e. coli: an exploratory study |
publisher |
BMC |
series |
Antimicrobial Resistance and Infection Control |
issn |
2047-2994 |
publishDate |
2020-03-01 |
description |
Abstract Objective To determine the effect of exposure to remnants of a phagemid-containing E. coli, killed by treatment with a propanol-based hand rub, on antimicrobial resistance in E. coli isolates. Methods An in vitro model was developed in which a clinical E. coli isolate (EUR1) was exposed to remnants of an E. coli K-12 strain containing a phagemid (pBS-E12) strain treated with Sterillium®. A series of 200 experiments was performed using this in vitro model. As a control, a series of 400 experiments was performed where the EUR1 was exposed either to the remnants of an E. coli K-12 strain (not containing a phagemid) (E12) treated with Sterillium® (n = 200) or to dried Sterillium® only (n = 200). The number of experiments that showed growth of an amoxicillin-resistant EUR1 isolate was evaluated in all three groups. An additional 48 experiments were performed in which a different clinical E. coli isolate (EUR2) was exposed to remnants of the pBS-E12 treated with Sterillium®. Whole-genome sequencing and phenotypic testing for AmpC beta-lactamase production was performed to investigate the mechanism behind this resistance development. Results In 22 (11.0%) of 200 experiments in which the EUR1 isolate was exposed to remnants of a pBS-E12 an amoxicillin-resistant mutant isolate was obtained, as opposed to only 2 (1.0%) of 200 experiments involving the exposure of the EUR1 to Sterillium® only (risk difference: 10.0%; 95% CI 5.4–14.6%)) and 1 (0.5%) of 200 experiments involving the exposure of the EUR1 isolate to the remnants of the phagemid-free E12 (risk difference: 10.5%; 95% CI 6.1–14.9%). In 1 (2.1%) of the 48 experiments in which the EUR2 isolate was exposed to remnants of a pBS-E12 an amoxicillin-resistant mutant isolate was obtained. The development of resistance in all experiments was due to mutations in the promoter/attenuator region of the chromosomal AmpC beta-lactamase (cAmpC) gene leading to cAmpC hyperproduction. Conclusion Exposure of an E. coli isolate to another phagemid-containing E. coli that was treated with propanol-based hand rub increased the development of amoxicillin resistance. Although phagemids are cloning vectors that are not present in clinical isolates, this finding may have implications for hand disinfection practices in healthcare facilities. |
topic |
Sterillium AmpC Antimicrobial resistance Disinfection |
url |
http://link.springer.com/article/10.1186/s13756-020-00708-7 |
work_keys_str_mv |
AT joepjjmstohr developmentofamoxicillinresistanceinescherichiacoliafterexposuretoremnantsofanonrelatedphagemidcontainingecolianexploratorystudy AT marjoleinfqkluytmansvandenbergh developmentofamoxicillinresistanceinescherichiacoliafterexposuretoremnantsofanonrelatedphagemidcontainingecolianexploratorystudy AT carlojmmverhulst developmentofamoxicillinresistanceinescherichiacoliafterexposuretoremnantsofanonrelatedphagemidcontainingecolianexploratorystudy AT johnwarossen developmentofamoxicillinresistanceinescherichiacoliafterexposuretoremnantsofanonrelatedphagemidcontainingecolianexploratorystudy AT janajwkluytmans developmentofamoxicillinresistanceinescherichiacoliafterexposuretoremnantsofanonrelatedphagemidcontainingecolianexploratorystudy |
_version_ |
1724569107132579840 |