Measuring Urban Subsidence in the Rome Metropolitan Area (Italy) with Sentinel-1 SNAP-StaMPS Persistent Scatterer Interferometry

Land subsidence in urban environments is an increasingly prominent aspect in the monitoring and maintenance of urban infrastructures. In this study we update the subsidence information over Rome and its surroundings (already the subject of past research with other sensors) for the first time using C...

Full description

Bibliographic Details
Main Authors: José Manuel Delgado Blasco, Michael Foumelis, Chris Stewart, Andrew Hooper
Format: Article
Language:English
Published: MDPI AG 2019-01-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/11/2/129
Description
Summary:Land subsidence in urban environments is an increasingly prominent aspect in the monitoring and maintenance of urban infrastructures. In this study we update the subsidence information over Rome and its surroundings (already the subject of past research with other sensors) for the first time using Copernicus Sentinel-1 data and open source tools. With this aim, we have developed a fully automatic processing chain for land deformation monitoring using the European Space Agency (ESA) SentiNel Application Platform (SNAP) and Stanford Method for Persistent Scatterers (StaMPS). We have applied this automatic processing chain to more than 160 Sentinel-1A images over ascending and descending orbits to depict primarily the Line-Of-Sight ground deformation rates. Results of both geometries were then combined to compute the actual vertical motion component, which resulted in more than 2 million point targets, over their common area. Deformation measurements are in agreement with past studies over the city of Rome, identifying main subsidence areas in: (i) Fiumicino; (ii) along the Tiber River; (iii) Ostia and coastal area; (iv) Ostiense quarter; and (v) Tivoli area. Finally, post-processing of Persistent Scatterer Inteferometry (PSI) results, in a Geographical Information System (GIS) environment, for the extraction of ground displacements on urban infrastructures (including road networks, buildings and bridges) is considered.
ISSN:2072-4292