Summary: | Although a number of tactics towards the fabrication and biomedical exploration of stimuli-responsive polymeric assemblies being responsive and adaptive to various factors have appeared, the controlled preparation of assemblies with well-defined physicochemical properties and tailor-made functions are still challenges. These responsive polymeric assemblies, which are triggered by stimuli, always exhibited reversible or irreversible changes in chemical structures and physical properties. However, simple drug/polymer nanocomplexes cannot deliver or release drugs into the diseased sites and cells on-demand due to the inevitable biological barriers. Hence, utilizing therapeutic or imaging agents-loaded stimuli-responsive block copolymer assemblies that are responsive to tumor internal microenvironments (pH, redox, enzyme, and temperature, etc.) or external stimuli (light and electromagnetic field, etc.) have emerged to be an important solution to improve therapeutic efficacy and imaging sensitivity through rationally designing as well as self-assembling approaches. In this review, we summarize a portion of recent progress in tumor and intracellular microenvironment responsive block copolymer assemblies and their applications in anticancer drug delivery and triggered release and enhanced imaging sensitivity. The outlook on future developments is also discussed. We hope that this review can stimulate more revolutionary ideas and novel concepts and meet the significant interest to diverse readers.
|