In-silico gene co-expression network analysis in Paracoccidioides brasiliensis with reference to haloacid dehalogenase superfamily hydrolase gene

Context: Paracoccidioides brasiliensis, a dimorphic fungus is the causative agent of paracoccidioidomycosis, a disease globally affecting millions of people. The haloacid dehalogenase (HAD) superfamily hydrolases enzyme in the fungi, in particular, is known to be responsible in the pathogenesis by a...

Full description

Bibliographic Details
Main Authors: Raghunath Satpathy, V B Konkimalla, Jagnyeswar Ratha
Format: Article
Language:English
Published: Wolters Kluwer Medknow Publications 2015-01-01
Series:Journal of Pharmacy and Bioallied Sciences
Subjects:
Online Access:http://www.jpbsonline.org/article.asp?issn=0975-7406;year=2015;volume=7;issue=3;spage=212;epage=217;aulast=Satpathy
Description
Summary:Context: Paracoccidioides brasiliensis, a dimorphic fungus is the causative agent of paracoccidioidomycosis, a disease globally affecting millions of people. The haloacid dehalogenase (HAD) superfamily hydrolases enzyme in the fungi, in particular, is known to be responsible in the pathogenesis by adhering to the tissue. Hence, identification of novel drug targets is essential. Aims: In-silico based identification of co-expressed genes along with HAD superfamily hydrolase in P. brasiliensis during the morphogenesis from mycelium to yeast to identify possible genes as drug targets. Materials and Methods: In total, four datasets were retrieved from the NCBI-gene expression omnibus (GEO) database, each containing 4340 genes, followed by gene filtration expression of the data set. Further co-expression (CE) study was performed individually and then a combination these genes were visualized in the Cytoscape 2. 8.3. Statistical Analysis Used: Mean and standard deviation value of the HAD superfamily hydrolase gene was obtained from the expression data and this value was subsequently used for the CE calculation purpose by selecting specific correlation power and filtering threshold. Results: The 23 genes that were thus obtained are common with respect to the HAD superfamily hydrolase gene. A significant network was selected from the Cytoscape network visualization that contains total 7 genes out of which 5 genes, which do not have significant protein hits, obtained from gene annotation of the expressed sequence tags by BLAST X. For all the protein PSI-BLAST was performed against human genome to find the homology. Conclusions: The gene co-expression network was obtained with respect to HAD superfamily dehalogenase gene in P. Brasiliensis.
ISSN:0975-7406
0976-4879