Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions
We investigate the dependence of the \(L^1\to L^{\infty}\) dispersive estimates for one-dimensional radial Schrödinger operators on boundary conditions at \(0\). In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the di...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AGH Univeristy of Science and Technology Press
2016-01-01
|
Series: | Opuscula Mathematica |
Subjects: | |
Online Access: | http://www.opuscula.agh.edu.pl/vol36/6/art/opuscula_math_3646.pdf |
id |
doaj-43c283448fb94a97a25ae20d8ed767ce |
---|---|
record_format |
Article |
spelling |
doaj-43c283448fb94a97a25ae20d8ed767ce2020-11-25T00:29:56ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742016-01-01366769786http://dx.doi.org/10.7494/OpMath.2016.36.6.7693646Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditionsMarkus Holzleitner0Aleksey Kostenko1Gerald Teschl2University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, AustriaUniversity of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, AustriaUniversity of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, AustriaWe investigate the dependence of the \(L^1\to L^{\infty}\) dispersive estimates for one-dimensional radial Schrödinger operators on boundary conditions at \(0\). In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the dispersive decay estimates if the angular momentum is positive, \(l\in (0,1/2)\). However, for nonpositive angular momenta, \(l\in (-1/2,0]\), the standard \(O(|t|^{-1/2})\) decay remains true for all self-adjoint realizations.http://www.opuscula.agh.edu.pl/vol36/6/art/opuscula_math_3646.pdfSchrödinger equationdispersive estimatesscattering |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Markus Holzleitner Aleksey Kostenko Gerald Teschl |
spellingShingle |
Markus Holzleitner Aleksey Kostenko Gerald Teschl Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions Opuscula Mathematica Schrödinger equation dispersive estimates scattering |
author_facet |
Markus Holzleitner Aleksey Kostenko Gerald Teschl |
author_sort |
Markus Holzleitner |
title |
Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions |
title_short |
Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions |
title_full |
Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions |
title_fullStr |
Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions |
title_full_unstemmed |
Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions |
title_sort |
dispersion estimates for spherical schrödinger equations: the effect of boundary conditions |
publisher |
AGH Univeristy of Science and Technology Press |
series |
Opuscula Mathematica |
issn |
1232-9274 |
publishDate |
2016-01-01 |
description |
We investigate the dependence of the \(L^1\to L^{\infty}\) dispersive estimates for one-dimensional radial Schrödinger operators on boundary conditions at \(0\). In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the dispersive decay estimates if the angular momentum is positive, \(l\in (0,1/2)\). However, for nonpositive angular momenta, \(l\in (-1/2,0]\), the standard \(O(|t|^{-1/2})\) decay remains true for all self-adjoint realizations. |
topic |
Schrödinger equation dispersive estimates scattering |
url |
http://www.opuscula.agh.edu.pl/vol36/6/art/opuscula_math_3646.pdf |
work_keys_str_mv |
AT markusholzleitner dispersionestimatesforsphericalschrodingerequationstheeffectofboundaryconditions AT alekseykostenko dispersionestimatesforsphericalschrodingerequationstheeffectofboundaryconditions AT geraldteschl dispersionestimatesforsphericalschrodingerequationstheeffectofboundaryconditions |
_version_ |
1725328901663621120 |