Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions

We investigate the dependence of the \(L^1\to L^{\infty}\) dispersive estimates for one-dimensional radial Schrödinger operators on boundary conditions at \(0\). In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the di...

Full description

Bibliographic Details
Main Authors: Markus Holzleitner, Aleksey Kostenko, Gerald Teschl
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2016-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol36/6/art/opuscula_math_3646.pdf
id doaj-43c283448fb94a97a25ae20d8ed767ce
record_format Article
spelling doaj-43c283448fb94a97a25ae20d8ed767ce2020-11-25T00:29:56ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742016-01-01366769786http://dx.doi.org/10.7494/OpMath.2016.36.6.7693646Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditionsMarkus Holzleitner0Aleksey Kostenko1Gerald Teschl2University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, AustriaUniversity of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, AustriaUniversity of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, AustriaWe investigate the dependence of the \(L^1\to L^{\infty}\) dispersive estimates for one-dimensional radial Schrödinger operators on boundary conditions at \(0\). In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the dispersive decay estimates if the angular momentum is positive, \(l\in (0,1/2)\). However, for nonpositive angular momenta, \(l\in (-1/2,0]\), the standard \(O(|t|^{-1/2})\) decay remains true for all self-adjoint realizations.http://www.opuscula.agh.edu.pl/vol36/6/art/opuscula_math_3646.pdfSchrödinger equationdispersive estimatesscattering
collection DOAJ
language English
format Article
sources DOAJ
author Markus Holzleitner
Aleksey Kostenko
Gerald Teschl
spellingShingle Markus Holzleitner
Aleksey Kostenko
Gerald Teschl
Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions
Opuscula Mathematica
Schrödinger equation
dispersive estimates
scattering
author_facet Markus Holzleitner
Aleksey Kostenko
Gerald Teschl
author_sort Markus Holzleitner
title Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions
title_short Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions
title_full Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions
title_fullStr Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions
title_full_unstemmed Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions
title_sort dispersion estimates for spherical schrödinger equations: the effect of boundary conditions
publisher AGH Univeristy of Science and Technology Press
series Opuscula Mathematica
issn 1232-9274
publishDate 2016-01-01
description We investigate the dependence of the \(L^1\to L^{\infty}\) dispersive estimates for one-dimensional radial Schrödinger operators on boundary conditions at \(0\). In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the dispersive decay estimates if the angular momentum is positive, \(l\in (0,1/2)\). However, for nonpositive angular momenta, \(l\in (-1/2,0]\), the standard \(O(|t|^{-1/2})\) decay remains true for all self-adjoint realizations.
topic Schrödinger equation
dispersive estimates
scattering
url http://www.opuscula.agh.edu.pl/vol36/6/art/opuscula_math_3646.pdf
work_keys_str_mv AT markusholzleitner dispersionestimatesforsphericalschrodingerequationstheeffectofboundaryconditions
AT alekseykostenko dispersionestimatesforsphericalschrodingerequationstheeffectofboundaryconditions
AT geraldteschl dispersionestimatesforsphericalschrodingerequationstheeffectofboundaryconditions
_version_ 1725328901663621120