Blowup and life span bounds for a reaction-diffusion equation with a time-dependent generator
We consider the nonlinear equation $$ frac{partial}{partial t} u (t) = k (t) Delta _{alpha }u (t) + u^{1+eta } (t),quad u(0,x)=lambda varphi (x),; xin mathbb{R} ^{d}, $$ where $Delta _{alpha }:=-(-Delta)^{alpha /2}$ denotes the fractional power of the Laplacian; $0<alpha leq 2$, $lam...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
2008-01-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/2008/10/abstr.html |