An Imbalanced Malicious Domains Detection Method Based on Passive DNS Traffic Analysis

Although existing malicious domains detection techniques have shown great success in many real-world applications, the problem of learning from imbalanced data is rarely concerned with this day. But the actual DNS traffic is inherently imbalanced; thus how to build malicious domains detection model...

Full description

Bibliographic Details
Main Authors: Zhenyan Liu, Yifei Zeng, Pengfei Zhang, Jingfeng Xue, Ji Zhang, Jiangtao Liu
Format: Article
Language:English
Published: Hindawi-Wiley 2018-01-01
Series:Security and Communication Networks
Online Access:http://dx.doi.org/10.1155/2018/6510381
Description
Summary:Although existing malicious domains detection techniques have shown great success in many real-world applications, the problem of learning from imbalanced data is rarely concerned with this day. But the actual DNS traffic is inherently imbalanced; thus how to build malicious domains detection model oriented to imbalanced data is a very important issue worthy of study. This paper proposes a novel imbalanced malicious domains detection method based on passive DNS traffic analysis, which can effectively deal with not only the between-class imbalance problem but also the within-class imbalance problem. The experiments show that this proposed method has favorable performance compared to the existing algorithms.
ISSN:1939-0114
1939-0122