Results on the Existence and Convergence of Best Proximity Points

<p/> <p>We first consider a cyclic <inline-formula> <graphic file="1687-1812-2010-386037-i1.gif"/></inline-formula>-contraction map on a reflexive Banach space <inline-formula> <graphic file="1687-1812-2010-386037-i2.gif"/></inline-for...

Full description

Bibliographic Details
Main Authors: Abkar Ali, Gabeleh Moosa
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2010/386037
Description
Summary:<p/> <p>We first consider a cyclic <inline-formula> <graphic file="1687-1812-2010-386037-i1.gif"/></inline-formula>-contraction map on a reflexive Banach space <inline-formula> <graphic file="1687-1812-2010-386037-i2.gif"/></inline-formula> and provide a positive answer to a question raised by Al-Thagafi and Shahzad on the existence of best proximity points for cyclic <inline-formula> <graphic file="1687-1812-2010-386037-i3.gif"/></inline-formula>-contraction maps in reflexive Banach spaces in one of their works (2009). In the second part of the paper, we will discuss the existence of best proximity points in the framework of more general metric spaces. We obtain some new results on the existence of best proximity points in hyperconvex metric spaces as well as in ultrametric spaces.</p>
ISSN:1687-1820
1687-1812