Summary: | The extent and sources of variation in the wood quality of Sitka spruce (Picea sitchensis (Bong.) Carr.) were quantified using data collected from 64 stands in northern Britain. These stands were selected on the basis of elevation, latitude, longitude, yield class, initial spacing and the presence or absence of thinning. Dynamic modulus of elasticity (MOE) was calculated from measurements of stress wave velocity made on standing trees and qualitative descriptions were made of stem form. Dynamic MOE of individual trees ranged from 3.81 kN/mm up to 12.29 kN/mm, with a mean of 7.71 kN/mm. Approximately 55 percent of the variation in dynamic MOE was due to differences between individual trees within a site, while 35 percent was due to differences between sites. The remaining 10 percent was due to differences between the measurements made on opposite sides of each tree. Variation in dynamic MOE at the site level was significantly influenced by yield class, elevation as well as by a number of the interactions between these factors and latitude, longitude and initial spacing. A multiple regression model incorporating these variables was able to explain 45 percent of the variation in dynamic MOE. Ramicorn branches were the most commonly recorded defect (37.2% of all live trees), followed by stem scarring and basal sweep (6.9% and 6.3%, respectively). Dynamic MOE was not influenced by stem straightness (p = 0.10) which indicates the utility of stress wave velocity measurements for segregating Sitka spruce stands based on potential grade recovery.222
|