An Improved Global Harmony Search Algorithm for the Identification of Nonlinear Discrete-Time Systems Based on Volterra Filter Modeling

This paper describes an improved global harmony search (IGHS) algorithm for identifying the nonlinear discrete-time systems based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS) algorithm, and it makes two significant improvements on the NGHS...

Full description

Bibliographic Details
Main Authors: Zongyan Li, Deliang Li
Format: Article
Language:English
Published: Hindawi Limited 2016-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2016/3102845
Description
Summary:This paper describes an improved global harmony search (IGHS) algorithm for identifying the nonlinear discrete-time systems based on second-order Volterra model. The IGHS is an improved version of the novel global harmony search (NGHS) algorithm, and it makes two significant improvements on the NGHS. First, the genetic mutation operation is modified by combining normal distribution and Cauchy distribution, which enables the IGHS to fully explore and exploit the solution space. Second, an opposition-based learning (OBL) is introduced and modified to improve the quality of harmony vectors. The IGHS algorithm is implemented on two numerical examples, and they are nonlinear discrete-time rational system and the real heat exchanger, respectively. The results of the IGHS are compared with those of the other three methods, and it has been verified to be more effective than the other three methods on solving the above two problems with different input signals and system memory sizes.
ISSN:1024-123X
1563-5147