Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH<sub>4</sub>-H<sub>2</sub> Gas Mixture
Diamond films are advanced engineering materials for various industrial applications requiring a coating material with extremely high thermal conductivity and low electrical conductivity. An approach for the synthesis of diamond films via high-speed jet deposition of thermally activated gas has been...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-01-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/1/219 |
id |
doaj-436eade51de1433b9d4b1b05001630ae |
---|---|
record_format |
Article |
spelling |
doaj-436eade51de1433b9d4b1b05001630ae2020-11-25T02:05:26ZengMDPI AGMaterials1996-19442020-01-0113121910.3390/ma13010219ma13010219Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH<sub>4</sub>-H<sub>2</sub> Gas MixtureYu.V. Fedoseeva0D.V. Gorodetskiy1K.I. Baskakova2I.P. Asanov3L.G. Bulusheva4A.A. Makarova5I.B. Yudin6M.Yu. Plotnikov7A.A. Emelyanov8A.K. Rebrov9A.V. Okotrub10Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaNikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaNikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaNikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaNikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaPhysical Chemistry, Institute of Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, GermanyKutateladze Institute of Thermophysics, SB RAS, 1 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaKutateladze Institute of Thermophysics, SB RAS, 1 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaKutateladze Institute of Thermophysics, SB RAS, 1 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaKutateladze Institute of Thermophysics, SB RAS, 1 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaNikolaev Institute of Inorganic Chemistry SB RAS, 3 Acad. Lavrentiev Ave., 630090 Novosibirsk, RussiaDiamond films are advanced engineering materials for various industrial applications requiring a coating material with extremely high thermal conductivity and low electrical conductivity. An approach for the synthesis of diamond films via high-speed jet deposition of thermally activated gas has been applied. In this method, spatially separated high-speed flows of methane and hydrogen were thermally activated, and methyl and hydrogen radicals were deposited on heated molybdenum substrates. The morphology and structure of three diamond films were studied, which were synthesized at a heating power of 900, 1700, or 1800 W, methane flow rate of 10 or 30 sccm, hydrogen flow rate of 1500 or 3500 sccm, and duration of the synthesis from 1.5 to 3 h.The morphology and electronic state of the carbon on the surface and in the bulk of the obtained films were analyzed by scanning electron microscopy, Raman scattering, X-ray photoelectron, and near-edge X-ray absorption fine structure spectroscopies. The diamond micro-crystals with a thick oxidized amorphous <i>sp</i><sup>2</sup>-carbon coating were grown at a heating power of 900 W and a hydrogen flow rate of 1500 sccm. The quality of the crystals was improved, and the growth rate of the diamond film was increased seven times when the heating power was 1700−1800 W and the methane and hydrogen flow rates were 30 and 3500 sccm, respectively. Defective octahedral diamond crystals of 30 μm in size with a thin <i>sp</i><sup>2</sup>-carbon surface layer were synthesized on a Mo substrate heated at 1273 K for 1.5 h. When the synthesis duration was doubled, and the substrate temperature was decreased to 1073 K, the denser film with rhombic-dodecahedron diamond crystals was grown. In this case, the thinnest hydrogenated <i>sp</i><sup>2</sup>-carbon coating was detected on the surface of the diamond crystals.https://www.mdpi.com/1996-1944/13/1/219diamond filmhigh-speed gas flowjet-depositionsurface coatingxpsnexafs |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Yu.V. Fedoseeva D.V. Gorodetskiy K.I. Baskakova I.P. Asanov L.G. Bulusheva A.A. Makarova I.B. Yudin M.Yu. Plotnikov A.A. Emelyanov A.K. Rebrov A.V. Okotrub |
spellingShingle |
Yu.V. Fedoseeva D.V. Gorodetskiy K.I. Baskakova I.P. Asanov L.G. Bulusheva A.A. Makarova I.B. Yudin M.Yu. Plotnikov A.A. Emelyanov A.K. Rebrov A.V. Okotrub Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH<sub>4</sub>-H<sub>2</sub> Gas Mixture Materials diamond film high-speed gas flow jet-deposition surface coating xps nexafs |
author_facet |
Yu.V. Fedoseeva D.V. Gorodetskiy K.I. Baskakova I.P. Asanov L.G. Bulusheva A.A. Makarova I.B. Yudin M.Yu. Plotnikov A.A. Emelyanov A.K. Rebrov A.V. Okotrub |
author_sort |
Yu.V. Fedoseeva |
title |
Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH<sub>4</sub>-H<sub>2</sub> Gas Mixture |
title_short |
Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH<sub>4</sub>-H<sub>2</sub> Gas Mixture |
title_full |
Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH<sub>4</sub>-H<sub>2</sub> Gas Mixture |
title_fullStr |
Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH<sub>4</sub>-H<sub>2</sub> Gas Mixture |
title_full_unstemmed |
Structure of Diamond Films Grown Using High-Speed Flow of a Thermally Activated CH<sub>4</sub>-H<sub>2</sub> Gas Mixture |
title_sort |
structure of diamond films grown using high-speed flow of a thermally activated ch<sub>4</sub>-h<sub>2</sub> gas mixture |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2020-01-01 |
description |
Diamond films are advanced engineering materials for various industrial applications requiring a coating material with extremely high thermal conductivity and low electrical conductivity. An approach for the synthesis of diamond films via high-speed jet deposition of thermally activated gas has been applied. In this method, spatially separated high-speed flows of methane and hydrogen were thermally activated, and methyl and hydrogen radicals were deposited on heated molybdenum substrates. The morphology and structure of three diamond films were studied, which were synthesized at a heating power of 900, 1700, or 1800 W, methane flow rate of 10 or 30 sccm, hydrogen flow rate of 1500 or 3500 sccm, and duration of the synthesis from 1.5 to 3 h.The morphology and electronic state of the carbon on the surface and in the bulk of the obtained films were analyzed by scanning electron microscopy, Raman scattering, X-ray photoelectron, and near-edge X-ray absorption fine structure spectroscopies. The diamond micro-crystals with a thick oxidized amorphous <i>sp</i><sup>2</sup>-carbon coating were grown at a heating power of 900 W and a hydrogen flow rate of 1500 sccm. The quality of the crystals was improved, and the growth rate of the diamond film was increased seven times when the heating power was 1700−1800 W and the methane and hydrogen flow rates were 30 and 3500 sccm, respectively. Defective octahedral diamond crystals of 30 μm in size with a thin <i>sp</i><sup>2</sup>-carbon surface layer were synthesized on a Mo substrate heated at 1273 K for 1.5 h. When the synthesis duration was doubled, and the substrate temperature was decreased to 1073 K, the denser film with rhombic-dodecahedron diamond crystals was grown. In this case, the thinnest hydrogenated <i>sp</i><sup>2</sup>-carbon coating was detected on the surface of the diamond crystals. |
topic |
diamond film high-speed gas flow jet-deposition surface coating xps nexafs |
url |
https://www.mdpi.com/1996-1944/13/1/219 |
work_keys_str_mv |
AT yuvfedoseeva structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT dvgorodetskiy structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT kibaskakova structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT ipasanov structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT lgbulusheva structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT aamakarova structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT ibyudin structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT myuplotnikov structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT aaemelyanov structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT akrebrov structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture AT avokotrub structureofdiamondfilmsgrownusinghighspeedflowofathermallyactivatedchsub4subhsub2subgasmixture |
_version_ |
1724938089596452864 |