Summary: | In a MEMS capacitive accelerometer, there is an offset due to mechanical and electrical factors, and the offset would deteriorate the performance of the accelerometer. Reducing the offset from mechanism would benefit the improvement in performance. Yet, the compositions of the offset are complex and mix together, so it is difficult to decompose the offset to provide guidance for the reduction. In this work, a decomposition method of offset in a MEMS capacitive accelerometer was proposed. The compositions of the offset were first analyzed quantitatively, and methods of measuring key parameters were developed. Based on our proposed decomposition method, the experiment of offset decomposition with a closed-loop MEMS capacitive accelerometer was carried out. The results showed that the offset successfully decomposed, and the major source was from the fabricated gap mismatch in the MEMS sensor. This work provides a new way for analyzing the offset in a MEMS capacitive accelerometer, and it is helpful for purposefully taking steps to reduce the offset and improve accelerometer performance.
|