The mappings of degree 1
<p>The maps of the form <mml:math> <mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mstyle displaystyle='true'> <mml...
Format: | Article |
---|---|
Language: | English |
Published: |
Hindawi Limited
2006-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://www.hindawi.com/GetArticle.aspx?doi=10.1155/JBB/2006/90837 |
id |
doaj-433deb98eea04f7382163a0f9700b205 |
---|---|
record_format |
Article |
spelling |
doaj-433deb98eea04f7382163a0f9700b2052020-11-25T00:24:19ZengHindawi LimitedAbstract and Applied Analysis1085-33752006-01-012006The mappings of degree 1<p>The maps of the form <mml:math> <mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mstyle displaystyle='true'> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>⋅</mml:mo><mml:mi>x</mml:mi><mml:mo>⋅</mml:mo><mml:msub> <mml:mi>b</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:mstyle> </mml:math>, called 1-degree maps, are introduced and investigated. For noncommutative algebras and modules over them 1-degree maps give an analogy of linear maps and differentials. Under some conditions on the algebra <mml:math> <mml:mi>𝒜</mml:mi> </mml:math>, contractibility of the group of 1-degree isomorphisms is proved for the module <mml:math> <mml:msub> <mml:mi>l</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>𝒜</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math>. It is shown that these conditions are fulfilled for the algebra of linear maps of a finite-dimensional linear space. The notion of 1-degree map gives a possibility to define a nonlinear Fredholm map of <mml:math> <mml:msub> <mml:mi>l</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>𝒜</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> and a Fredholm manifold modelled by <mml:math> <mml:msub> <mml:mi>l</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>𝒜</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math>. 1-degree maps are also applied to some problems of Markov chains.</p>http://www.hindawi.com/GetArticle.aspx?doi=10.1155/JBB/2006/90837 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
title |
The mappings of degree 1 |
spellingShingle |
The mappings of degree 1 Abstract and Applied Analysis |
title_short |
The mappings of degree 1 |
title_full |
The mappings of degree 1 |
title_fullStr |
The mappings of degree 1 |
title_full_unstemmed |
The mappings of degree 1 |
title_sort |
mappings of degree 1 |
publisher |
Hindawi Limited |
series |
Abstract and Applied Analysis |
issn |
1085-3375 |
publishDate |
2006-01-01 |
description |
<p>The maps of the form <mml:math> <mml:mi>f</mml:mi><mml:mrow><mml:mo>(</mml:mo> <mml:mi>x</mml:mi> <mml:mo>)</mml:mo></mml:mrow><mml:mo>=</mml:mo><mml:mstyle displaystyle='true'> <mml:msubsup> <mml:mo>∑</mml:mo> <mml:mrow> <mml:mi>i</mml:mi><mml:mo>=</mml:mo><mml:mn>1</mml:mn> </mml:mrow> <mml:mi>n</mml:mi> </mml:msubsup> <mml:mrow> <mml:msub> <mml:mi>a</mml:mi> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>⋅</mml:mo><mml:mi>x</mml:mi><mml:mo>⋅</mml:mo><mml:msub> <mml:mi>b</mml:mi> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:mstyle> </mml:math>, called 1-degree maps, are introduced and investigated. For noncommutative algebras and modules over them 1-degree maps give an analogy of linear maps and differentials. Under some conditions on the algebra <mml:math> <mml:mi>𝒜</mml:mi> </mml:math>, contractibility of the group of 1-degree isomorphisms is proved for the module <mml:math> <mml:msub> <mml:mi>l</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>𝒜</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math>. It is shown that these conditions are fulfilled for the algebra of linear maps of a finite-dimensional linear space. The notion of 1-degree map gives a possibility to define a nonlinear Fredholm map of <mml:math> <mml:msub> <mml:mi>l</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>𝒜</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math> and a Fredholm manifold modelled by <mml:math> <mml:msub> <mml:mi>l</mml:mi> <mml:mn>2</mml:mn> </mml:msub> <mml:mrow><mml:mo>(</mml:mo> <mml:mi>𝒜</mml:mi> <mml:mo>)</mml:mo></mml:mrow> </mml:math>. 1-degree maps are also applied to some problems of Markov chains.</p> |
url |
http://www.hindawi.com/GetArticle.aspx?doi=10.1155/JBB/2006/90837 |
_version_ |
1725352628689305600 |