Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra
Background The common dragonet, Callionymus lyra, is one of three Callionymus species inhabiting the North Sea. All three species show strong sexual dimorphism. The males show strong morphological differentiation, e.g., species-specific colouration and siz...
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
GigaScience Press
2020-10-01
|
Series: | GigaByte |
Online Access: | https://gigabytejournal.com/articles/6 |
id |
doaj-4329555e33164bb1a358dacb0db4df73 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Sven Winter Stefan Prost Jordi de Raad Raphael T. F. Coimbra Magnus Wolf Marcel Nebenführ Annika Held Melina Kurzawe Ramona Papapostolou Jade Tessien Julian Bludau Andreas Kelch Sarah Gronefeld Yannis Schöneberg Christian Zeitz Konstantin Zapf David Prochotta Maximilian Murphy Monica M. Sheffer Moritz Sonnewald Maria A. Nilsson Axel Janke |
spellingShingle |
Sven Winter Stefan Prost Jordi de Raad Raphael T. F. Coimbra Magnus Wolf Marcel Nebenführ Annika Held Melina Kurzawe Ramona Papapostolou Jade Tessien Julian Bludau Andreas Kelch Sarah Gronefeld Yannis Schöneberg Christian Zeitz Konstantin Zapf David Prochotta Maximilian Murphy Monica M. Sheffer Moritz Sonnewald Maria A. Nilsson Axel Janke Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra GigaByte |
author_facet |
Sven Winter Stefan Prost Jordi de Raad Raphael T. F. Coimbra Magnus Wolf Marcel Nebenführ Annika Held Melina Kurzawe Ramona Papapostolou Jade Tessien Julian Bludau Andreas Kelch Sarah Gronefeld Yannis Schöneberg Christian Zeitz Konstantin Zapf David Prochotta Maximilian Murphy Monica M. Sheffer Moritz Sonnewald Maria A. Nilsson Axel Janke |
author_sort |
Sven Winter |
title |
Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra |
title_short |
Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra |
title_full |
Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra |
title_fullStr |
Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra |
title_full_unstemmed |
Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra |
title_sort |
chromosome-level genome assembly of a benthic associated syngnathiformes species: the common dragonet, callionymus lyra |
publisher |
GigaScience Press |
series |
GigaByte |
issn |
2709-4715 |
publishDate |
2020-10-01 |
description |
Background
The common dragonet, Callionymus lyra, is one of three Callionymus species inhabiting the North Sea. All three species show strong sexual dimorphism. The males show strong morphological differentiation, e.g., species-specific colouration and size relations, while the females of different species have few distinguishing characters. Callionymus belongs to the ‘benthic associated clade’ of the order Syngnathiformes. The ‘benthic associated clade’ so far is not represented by genome data and serves as an important outgroup to understand the morphological transformation in ‘long-snouted’ syngnatiformes such as seahorses and pipefishes.
Findings
Here, we present the chromosome-level genome assembly of C. lyra. We applied Oxford Nanopore Technologies’ long-read sequencing, short-read DNBseq, and proximity-ligation-based scaffolding to generate a high-quality genome assembly. The resulting assembly has a contig N50 of 2.2 Mbp and a scaffold N50 of 26.7 Mbp. The total assembly length is 568.7 Mbp, of which over 538 Mbp were scaffolded into 19 chromosome-length scaffolds. The identification of 94.5% complete BUSCO genes indicates high assembly completeness. Additionally, we sequenced and assembled a multi-tissue transcriptome with a total length of 255.5 Mbp that was used to aid the annotation of the genome assembly. The annotation resulted in 19,849 annotated transcripts and identified a repeat content of 27.7%.
Conclusions
The chromosome-level assembly of C. lyra provides a high-quality reference genome for future population genomic, phylogenomic, and phylogeographic analyses.
|
url |
https://gigabytejournal.com/articles/6 |
work_keys_str_mv |
AT svenwinter chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT stefanprost chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT jordideraad chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT raphaeltfcoimbra chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT magnuswolf chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT marcelnebenfuhr chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT annikaheld chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT melinakurzawe chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT ramonapapapostolou chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT jadetessien chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT julianbludau chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT andreaskelch chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT sarahgronefeld chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT yannisschoneberg chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT christianzeitz chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT konstantinzapf chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT davidprochotta chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT maximilianmurphy chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT monicamsheffer chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT moritzsonnewald chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT mariaanilsson chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra AT axeljanke chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra |
_version_ |
1721398336153452544 |
spelling |
doaj-4329555e33164bb1a358dacb0db4df732021-06-04T06:08:06ZengGigaScience PressGigaByte2709-47152020-10-0110.46471/gigabyte.6Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyraSven Winter0https://orcid.org/0000-0002-1890-0977Stefan Prost1https://orcid.org/0000-0002-6229-3596Jordi de Raad2https://orcid.org/0000-0002-4991-4431Raphael T. F. Coimbra3https://orcid.org/0000-0002-6075-7203Magnus Wolf4https://orcid.org/0000-0001-9212-9861Marcel Nebenführ5Annika Held6Melina Kurzawe7Ramona Papapostolou8Jade Tessien9Julian Bludau10Andreas Kelch11https://orcid.org/0000-0002-8265-4643Sarah Gronefeld12Yannis Schöneberg13https://orcid.org/0000-0003-1113-973XChristian Zeitz14Konstantin Zapf15David Prochotta16Maximilian Murphy17Monica M. Sheffer18https://orcid.org/0000-0002-6527-4198Moritz Sonnewald19Maria A. Nilsson20https://orcid.org/0000-0002-8136-7263Axel Janke21https://orcid.org/0000-0002-9394-1904Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, GermanyLOEWE-Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany, South African National Biodiversity Institute, National Zoological Garden, Pretoria, South AfricaInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany, LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyZoological Institute and Museum, University of Greifswald, Greifswald, GermanySenckenberg Research Institute, Department of Marine Zoology, Section Ichthyology, Frankfurt am Main, GermanySenckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany, LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany, LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany Background The common dragonet, Callionymus lyra, is one of three Callionymus species inhabiting the North Sea. All three species show strong sexual dimorphism. The males show strong morphological differentiation, e.g., species-specific colouration and size relations, while the females of different species have few distinguishing characters. Callionymus belongs to the ‘benthic associated clade’ of the order Syngnathiformes. The ‘benthic associated clade’ so far is not represented by genome data and serves as an important outgroup to understand the morphological transformation in ‘long-snouted’ syngnatiformes such as seahorses and pipefishes. Findings Here, we present the chromosome-level genome assembly of C. lyra. We applied Oxford Nanopore Technologies’ long-read sequencing, short-read DNBseq, and proximity-ligation-based scaffolding to generate a high-quality genome assembly. The resulting assembly has a contig N50 of 2.2 Mbp and a scaffold N50 of 26.7 Mbp. The total assembly length is 568.7 Mbp, of which over 538 Mbp were scaffolded into 19 chromosome-length scaffolds. The identification of 94.5% complete BUSCO genes indicates high assembly completeness. Additionally, we sequenced and assembled a multi-tissue transcriptome with a total length of 255.5 Mbp that was used to aid the annotation of the genome assembly. The annotation resulted in 19,849 annotated transcripts and identified a repeat content of 27.7%. Conclusions The chromosome-level assembly of C. lyra provides a high-quality reference genome for future population genomic, phylogenomic, and phylogeographic analyses. https://gigabytejournal.com/articles/6 |