Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra

Background The common dragonet, Callionymus lyra, is one of three Callionymus species inhabiting the North Sea. All three species show strong sexual dimorphism. The males show strong morphological differentiation, e.g., species-specific colouration and siz...

Full description

Bibliographic Details
Main Authors: Sven Winter, Stefan Prost, Jordi de Raad, Raphael T. F. Coimbra, Magnus Wolf, Marcel Nebenführ, Annika Held, Melina Kurzawe, Ramona Papapostolou, Jade Tessien, Julian Bludau, Andreas Kelch, Sarah Gronefeld, Yannis Schöneberg, Christian Zeitz, Konstantin Zapf, David Prochotta, Maximilian Murphy, Monica M. Sheffer, Moritz Sonnewald, Maria A. Nilsson, Axel Janke
Format: Article
Language:English
Published: GigaScience Press 2020-10-01
Series:GigaByte
Online Access:https://gigabytejournal.com/articles/6
id doaj-4329555e33164bb1a358dacb0db4df73
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Sven Winter
Stefan Prost
Jordi de Raad
Raphael T. F. Coimbra
Magnus Wolf
Marcel Nebenführ
Annika Held
Melina Kurzawe
Ramona Papapostolou
Jade Tessien
Julian Bludau
Andreas Kelch
Sarah Gronefeld
Yannis Schöneberg
Christian Zeitz
Konstantin Zapf
David Prochotta
Maximilian Murphy
Monica M. Sheffer
Moritz Sonnewald
Maria A. Nilsson
Axel Janke
spellingShingle Sven Winter
Stefan Prost
Jordi de Raad
Raphael T. F. Coimbra
Magnus Wolf
Marcel Nebenführ
Annika Held
Melina Kurzawe
Ramona Papapostolou
Jade Tessien
Julian Bludau
Andreas Kelch
Sarah Gronefeld
Yannis Schöneberg
Christian Zeitz
Konstantin Zapf
David Prochotta
Maximilian Murphy
Monica M. Sheffer
Moritz Sonnewald
Maria A. Nilsson
Axel Janke
Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra
GigaByte
author_facet Sven Winter
Stefan Prost
Jordi de Raad
Raphael T. F. Coimbra
Magnus Wolf
Marcel Nebenführ
Annika Held
Melina Kurzawe
Ramona Papapostolou
Jade Tessien
Julian Bludau
Andreas Kelch
Sarah Gronefeld
Yannis Schöneberg
Christian Zeitz
Konstantin Zapf
David Prochotta
Maximilian Murphy
Monica M. Sheffer
Moritz Sonnewald
Maria A. Nilsson
Axel Janke
author_sort Sven Winter
title Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra
title_short Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra
title_full Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra
title_fullStr Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra
title_full_unstemmed Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra
title_sort chromosome-level genome assembly of a benthic associated syngnathiformes species: the common dragonet, callionymus lyra
publisher GigaScience Press
series GigaByte
issn 2709-4715
publishDate 2020-10-01
description Background The common dragonet, Callionymus lyra, is one of three Callionymus species inhabiting the North Sea. All three species show strong sexual dimorphism. The males show strong morphological differentiation, e.g., species-specific colouration and size relations, while the females of different species have few distinguishing characters. Callionymus belongs to the ‘benthic associated clade’ of the order Syngnathiformes. The ‘benthic associated clade’ so far is not represented by genome data and serves as an important outgroup to understand the morphological transformation in ‘long-snouted’ syngnatiformes such as seahorses and pipefishes. Findings Here, we present the chromosome-level genome assembly of C. lyra. We applied Oxford Nanopore Technologies’ long-read sequencing, short-read DNBseq, and proximity-ligation-based scaffolding to generate a high-quality genome assembly. The resulting assembly has a contig N50 of 2.2 Mbp and a scaffold N50 of 26.7 Mbp. The total assembly length is 568.7 Mbp, of which over 538 Mbp were scaffolded into 19 chromosome-length scaffolds. The identification of 94.5% complete BUSCO genes indicates high assembly completeness. Additionally, we sequenced and assembled a multi-tissue transcriptome with a total length of 255.5 Mbp that was used to aid the annotation of the genome assembly. The annotation resulted in 19,849 annotated transcripts and identified a repeat content of 27.7%. Conclusions The chromosome-level assembly of C. lyra provides a high-quality reference genome for future population genomic, phylogenomic, and phylogeographic analyses.
url https://gigabytejournal.com/articles/6
work_keys_str_mv AT svenwinter chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT stefanprost chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT jordideraad chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT raphaeltfcoimbra chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT magnuswolf chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT marcelnebenfuhr chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT annikaheld chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT melinakurzawe chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT ramonapapapostolou chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT jadetessien chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT julianbludau chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT andreaskelch chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT sarahgronefeld chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT yannisschoneberg chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT christianzeitz chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT konstantinzapf chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT davidprochotta chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT maximilianmurphy chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT monicamsheffer chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT moritzsonnewald chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT mariaanilsson chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
AT axeljanke chromosomelevelgenomeassemblyofabenthicassociatedsyngnathiformesspeciesthecommondragonetcallionymuslyra
_version_ 1721398336153452544
spelling doaj-4329555e33164bb1a358dacb0db4df732021-06-04T06:08:06ZengGigaScience PressGigaByte2709-47152020-10-0110.46471/gigabyte.6Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyraSven Winter0https://orcid.org/0000-0002-1890-0977Stefan Prost1https://orcid.org/0000-0002-6229-3596Jordi de Raad2https://orcid.org/0000-0002-4991-4431Raphael T. F. Coimbra3https://orcid.org/0000-0002-6075-7203Magnus Wolf4https://orcid.org/0000-0001-9212-9861Marcel Nebenführ5Annika Held6Melina Kurzawe7Ramona Papapostolou8Jade Tessien9Julian Bludau10Andreas Kelch11https://orcid.org/0000-0002-8265-4643Sarah Gronefeld12Yannis Schöneberg13https://orcid.org/0000-0003-1113-973XChristian Zeitz14Konstantin Zapf15David Prochotta16Maximilian Murphy17Monica M. Sheffer18https://orcid.org/0000-0002-6527-4198Moritz Sonnewald19Maria A. Nilsson20https://orcid.org/0000-0002-8136-7263Axel Janke21https://orcid.org/0000-0002-9394-1904Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, GermanyLOEWE-Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany, South African National Biodiversity Institute, National Zoological Garden, Pretoria, South AfricaInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany, LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, GermanyZoological Institute and Museum, University of Greifswald, Greifswald, GermanySenckenberg Research Institute, Department of Marine Zoology, Section Ichthyology, Frankfurt am Main, GermanySenckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany, LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt am Main, GermanyInstitute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany, Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany, LOEWE-Centre for Translational Biodiversity Genomics, Frankfurt am Main, Germany Background The common dragonet, Callionymus lyra, is one of three Callionymus species inhabiting the North Sea. All three species show strong sexual dimorphism. The males show strong morphological differentiation, e.g., species-specific colouration and size relations, while the females of different species have few distinguishing characters. Callionymus belongs to the ‘benthic associated clade’ of the order Syngnathiformes. The ‘benthic associated clade’ so far is not represented by genome data and serves as an important outgroup to understand the morphological transformation in ‘long-snouted’ syngnatiformes such as seahorses and pipefishes. Findings Here, we present the chromosome-level genome assembly of C. lyra. We applied Oxford Nanopore Technologies’ long-read sequencing, short-read DNBseq, and proximity-ligation-based scaffolding to generate a high-quality genome assembly. The resulting assembly has a contig N50 of 2.2 Mbp and a scaffold N50 of 26.7 Mbp. The total assembly length is 568.7 Mbp, of which over 538 Mbp were scaffolded into 19 chromosome-length scaffolds. The identification of 94.5% complete BUSCO genes indicates high assembly completeness. Additionally, we sequenced and assembled a multi-tissue transcriptome with a total length of 255.5 Mbp that was used to aid the annotation of the genome assembly. The annotation resulted in 19,849 annotated transcripts and identified a repeat content of 27.7%. Conclusions The chromosome-level assembly of C. lyra provides a high-quality reference genome for future population genomic, phylogenomic, and phylogeographic analyses. https://gigabytejournal.com/articles/6