On a new extended half-discrete Hilbert’s inequality involving partial sums

Abstract By applying the weight functions, the idea of introducing parameters, and Euler–Maclaurin summation formula, a new extended half-discrete Hilbert’s inequality with the homogeneous kernel and the beta, gamma function is given. The equivalent statements of the best possible constant factor re...

Full description

Bibliographic Details
Main Authors: Xing Shou Huang, Ricai Luo, Bicheng Yang
Format: Article
Language:English
Published: SpringerOpen 2020-01-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-020-2293-2
id doaj-43136ec9be064ac78ca4e1d0ec34325b
record_format Article
spelling doaj-43136ec9be064ac78ca4e1d0ec34325b2021-01-31T12:08:32ZengSpringerOpenJournal of Inequalities and Applications1029-242X2020-01-012020111410.1186/s13660-020-2293-2On a new extended half-discrete Hilbert’s inequality involving partial sumsXing Shou Huang0Ricai Luo1Bicheng Yang2School of Mathematics and Statistics, Hechi UniversitySchool of Mathematics and Statistics, Hechi UniversityDepartment of Mathematics, Guangdong University of EducationAbstract By applying the weight functions, the idea of introducing parameters, and Euler–Maclaurin summation formula, a new extended half-discrete Hilbert’s inequality with the homogeneous kernel and the beta, gamma function is given. The equivalent statements of the best possible constant factor related to a few parameters are considered. As applications, a corollary about the case of the non-homogeneous kernel and some particular cases are obtained.https://doi.org/10.1186/s13660-020-2293-2Weight functionHalf-discrete Hilbert’s inequalityParameterEuler–Maclaurin summation formulaGamma functionBeta function
collection DOAJ
language English
format Article
sources DOAJ
author Xing Shou Huang
Ricai Luo
Bicheng Yang
spellingShingle Xing Shou Huang
Ricai Luo
Bicheng Yang
On a new extended half-discrete Hilbert’s inequality involving partial sums
Journal of Inequalities and Applications
Weight function
Half-discrete Hilbert’s inequality
Parameter
Euler–Maclaurin summation formula
Gamma function
Beta function
author_facet Xing Shou Huang
Ricai Luo
Bicheng Yang
author_sort Xing Shou Huang
title On a new extended half-discrete Hilbert’s inequality involving partial sums
title_short On a new extended half-discrete Hilbert’s inequality involving partial sums
title_full On a new extended half-discrete Hilbert’s inequality involving partial sums
title_fullStr On a new extended half-discrete Hilbert’s inequality involving partial sums
title_full_unstemmed On a new extended half-discrete Hilbert’s inequality involving partial sums
title_sort on a new extended half-discrete hilbert’s inequality involving partial sums
publisher SpringerOpen
series Journal of Inequalities and Applications
issn 1029-242X
publishDate 2020-01-01
description Abstract By applying the weight functions, the idea of introducing parameters, and Euler–Maclaurin summation formula, a new extended half-discrete Hilbert’s inequality with the homogeneous kernel and the beta, gamma function is given. The equivalent statements of the best possible constant factor related to a few parameters are considered. As applications, a corollary about the case of the non-homogeneous kernel and some particular cases are obtained.
topic Weight function
Half-discrete Hilbert’s inequality
Parameter
Euler–Maclaurin summation formula
Gamma function
Beta function
url https://doi.org/10.1186/s13660-020-2293-2
work_keys_str_mv AT xingshouhuang onanewextendedhalfdiscretehilbertsinequalityinvolvingpartialsums
AT ricailuo onanewextendedhalfdiscretehilbertsinequalityinvolvingpartialsums
AT bichengyang onanewextendedhalfdiscretehilbertsinequalityinvolvingpartialsums
_version_ 1724317512024195072