Real-time assessment of plant photosynthetic pigment contents with an artificial intelligence approach in a mobile application

The assessment of the photosynthetic pigment contents in plants is a common procedure in agricultural studies and can describe plant conditions, such as their nutritional status, response to environmental changes, senescence, disease status and so forth. In this report, we show how the photosynthet...

Full description

Bibliographic Details
Main Authors: Kestrilia Rega Prilianti, Syaiful Anam, Tatas Hardo Panintingjati Brotosudarmo, Agus Suryanto
Format: Article
Language:English
Published: PAGEPress Publications 2020-12-01
Series:Journal of Agricultural Engineering
Subjects:
Online Access:https://www.j.agroengineering.org/index.php/jae/article/view/1082
Description
Summary:The assessment of the photosynthetic pigment contents in plants is a common procedure in agricultural studies and can describe plant conditions, such as their nutritional status, response to environmental changes, senescence, disease status and so forth. In this report, we show how the photosynthetic pigment contents in plant leaves can be predicted non-destructively and in real-time with an artificial intelligence approach. Using a convolutional neural network (CNN) model that was embedded in an Androidbased mobile application, a digital image of a leaf was processed to predict the three main photosynthetic pigment contents: chlorophyll, carotenoid and anthocyanin. The data representation, low sample size handling and developmental strategies of the best CNN model are discussed in this report. Our CNN model, photosynthetic pigment prediction network (P3Net), could accurately predict the chlorophyll, carotenoid and anthocyanin contents simultaneously. The prediction error for anthocyanin was ±2.93 mg/g (in the range of 0-345.45 mg/g), that for carotenoid was ±2.14 mg/g (in the range of 0-211.30 mg/g) and that for chlorophyll was ±5.75 mg/g (in the range of 0-892.25 mg/g). This is a promising result as a baseline for the future development of IoT smart devices in precision agriculture.
ISSN:1974-7071
2239-6268