GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki Earthquake
In contrast to most of the coseismic gravity change studies, which are generally based on data from the Gravity field Recovery and Climate Experiment (GRACE) satellite mission, we use observations from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) Satellite Gravity Gradient (S...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2019-05-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/11/11/1295 |
id |
doaj-42de0eb2d6284536a1fe31953edcef50 |
---|---|
record_format |
Article |
spelling |
doaj-42de0eb2d6284536a1fe31953edcef502020-11-25T01:12:18ZengMDPI AGRemote Sensing2072-42922019-05-011111129510.3390/rs11111295rs11111295GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki EarthquakeXinyu Xu0Hao Ding1Yongqi Zhao2Jin Li3Minzhang Hu4School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, ChinaSchool of Geodesy and Geomatics, Wuhan University, Wuhan 430079, ChinaSchool of Geodesy and Geomatics, Wuhan University, Wuhan 430079, ChinaShanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, ChinaKey Laboratory of Earthquake Geodesy, Institute of Seismology, China Earthquake Administration, 40 Hongshan Celu, Wuhan 430071, ChinaIn contrast to most of the coseismic gravity change studies, which are generally based on data from the Gravity field Recovery and Climate Experiment (GRACE) satellite mission, we use observations from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) Satellite Gravity Gradient (SGG) mission to estimate the coseismic gravity and gravity gradient changes caused by the 2011 Tohoku-Oki Mw 9.0 earthquake. We first construct two global gravity field models up to degree and order 220, before and after the earthquake, based on the least-squares method, with a bandpass Auto Regression Moving Average (ARMA) filter applied to the SGG data along the orbit. In addition, to reduce the influences of colored noise in the SGG data and the polar gap problem on the recovered model, we propose a tailored spherical harmonic (TSH) approach, which only uses the spherical harmonic (SH) coefficients with the degree range 30−95 to compute the coseismic gravity changes in the spatial domain. Then, both the results from the GOCE observations and the GRACE temporal gravity field models (with the same TSH degrees and orders) are simultaneously compared with the forward-modeled signals that are estimated based on the fault slip model of the earthquake event. Although there are considerable misfits between GOCE-derived and modeled gravity gradient changes (Δ<i>V<sub>xx</sub></i>, Δ<i>V<sub>yy</sub></i>, Δ<i>V<sub>zz</sub></i>, and Δ<i>V<sub>xz</sub></i>), we find analogous spatial patterns and a significant change (greater than 3<i>σ</i>) in gravity gradients before and after the earthquake. Moreover, we estimate the radial gravity gradient changes from the GOCE-derived monthly time-variable gravity field models before and after the earthquake, whose amplitudes are at a level over three times that of their corresponding uncertainties, and are thus significant. Additionally, the results show that the recovered coseismic gravity signals in the west-to-east direction from GOCE are closer to the modeled signals than those from GRACE in the TSH degree range 30−95. This indicates that the GOCE-derived gravity models might be used as additional observations to infer/explain some time-variable geophysical signals of interest.https://www.mdpi.com/2072-4292/11/11/1295coseismic gravity gradient changesgravity field modelGOCEGRACE |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Xinyu Xu Hao Ding Yongqi Zhao Jin Li Minzhang Hu |
spellingShingle |
Xinyu Xu Hao Ding Yongqi Zhao Jin Li Minzhang Hu GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki Earthquake Remote Sensing coseismic gravity gradient changes gravity field model GOCE GRACE |
author_facet |
Xinyu Xu Hao Ding Yongqi Zhao Jin Li Minzhang Hu |
author_sort |
Xinyu Xu |
title |
GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki Earthquake |
title_short |
GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki Earthquake |
title_full |
GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki Earthquake |
title_fullStr |
GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki Earthquake |
title_full_unstemmed |
GOCE-Derived Coseismic Gravity Gradient Changes Caused by the 2011 Tohoku-Oki Earthquake |
title_sort |
goce-derived coseismic gravity gradient changes caused by the 2011 tohoku-oki earthquake |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2019-05-01 |
description |
In contrast to most of the coseismic gravity change studies, which are generally based on data from the Gravity field Recovery and Climate Experiment (GRACE) satellite mission, we use observations from the Gravity field and steady-state Ocean Circulation Explorer (GOCE) Satellite Gravity Gradient (SGG) mission to estimate the coseismic gravity and gravity gradient changes caused by the 2011 Tohoku-Oki Mw 9.0 earthquake. We first construct two global gravity field models up to degree and order 220, before and after the earthquake, based on the least-squares method, with a bandpass Auto Regression Moving Average (ARMA) filter applied to the SGG data along the orbit. In addition, to reduce the influences of colored noise in the SGG data and the polar gap problem on the recovered model, we propose a tailored spherical harmonic (TSH) approach, which only uses the spherical harmonic (SH) coefficients with the degree range 30−95 to compute the coseismic gravity changes in the spatial domain. Then, both the results from the GOCE observations and the GRACE temporal gravity field models (with the same TSH degrees and orders) are simultaneously compared with the forward-modeled signals that are estimated based on the fault slip model of the earthquake event. Although there are considerable misfits between GOCE-derived and modeled gravity gradient changes (Δ<i>V<sub>xx</sub></i>, Δ<i>V<sub>yy</sub></i>, Δ<i>V<sub>zz</sub></i>, and Δ<i>V<sub>xz</sub></i>), we find analogous spatial patterns and a significant change (greater than 3<i>σ</i>) in gravity gradients before and after the earthquake. Moreover, we estimate the radial gravity gradient changes from the GOCE-derived monthly time-variable gravity field models before and after the earthquake, whose amplitudes are at a level over three times that of their corresponding uncertainties, and are thus significant. Additionally, the results show that the recovered coseismic gravity signals in the west-to-east direction from GOCE are closer to the modeled signals than those from GRACE in the TSH degree range 30−95. This indicates that the GOCE-derived gravity models might be used as additional observations to infer/explain some time-variable geophysical signals of interest. |
topic |
coseismic gravity gradient changes gravity field model GOCE GRACE |
url |
https://www.mdpi.com/2072-4292/11/11/1295 |
work_keys_str_mv |
AT xinyuxu gocederivedcoseismicgravitygradientchangescausedbythe2011tohokuokiearthquake AT haoding gocederivedcoseismicgravitygradientchangescausedbythe2011tohokuokiearthquake AT yongqizhao gocederivedcoseismicgravitygradientchangescausedbythe2011tohokuokiearthquake AT jinli gocederivedcoseismicgravitygradientchangescausedbythe2011tohokuokiearthquake AT minzhanghu gocederivedcoseismicgravitygradientchangescausedbythe2011tohokuokiearthquake |
_version_ |
1725167236161732608 |