Macroscopic Lane Change Model—A Flexible Event-Tree-Based Approach for the Prediction of Lane Change on Freeway Traffic

Binary logistic regression has been used to estimate the probability of lane change (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics&...

Full description

Bibliographic Details
Main Authors: Christina Ng, Susilawati Susilawati, Md Abdus Samad Kamal, Irene Chew Mei Leng
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Smart Cities
Subjects:
Online Access:https://www.mdpi.com/2624-6511/4/2/44
id doaj-42d7747e10754f5a8104d6f564fd1ff0
record_format Article
spelling doaj-42d7747e10754f5a8104d6f564fd1ff02021-06-01T00:58:21ZengMDPI AGSmart Cities2624-65112021-05-0144486488010.3390/smartcities4020044Macroscopic Lane Change Model—A Flexible Event-Tree-Based Approach for the Prediction of Lane Change on Freeway TrafficChristina Ng0Susilawati Susilawati1Md Abdus Samad Kamal2Irene Chew Mei Leng3School of Engineering, Monash University, Bandar Sunway, Selangor 47500, MalaysiaSchool of Engineering, Monash University, Bandar Sunway, Selangor 47500, MalaysiaGraduate School of Science and Technology, Gunma University, Kiryu 376-8515, JapanSchool of Engineering, Monash University, Bandar Sunway, Selangor 47500, MalaysiaBinary logistic regression has been used to estimate the probability of lane change (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula>) in the Cell Transmission Model (CTM). These models remain rigid, as the flexibility to predict <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> for different cell size configurations has not been accounted for. This paper introduces a relaxation method to refine the conventional binary logistic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> model using an event-tree approach. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> probability for increasing cell size and cell length was estimated by expanding the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> probability of a pre-defined model generated from different configurations of speed and density differences. The reliability of the proposed models has been validated with NGSIM trajectory data. The results showed that the models could accurately estimate the probability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> with a slight difference between the actual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> and predicted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> (95% Confidence Interval). Furthermore, a comparison of prediction performance between the proposed model and the actual observations has verified the model’s prediction ability with an accuracy of 0.69 and Area Under Curve (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula>) value above 0.6. The proposed method was able to accommodate the presence of multiple <i>LC</i>s when cell size changes. This is worthwhile to explore the importance of such consequences in affecting the performance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> prediction in the CTM model.https://www.mdpi.com/2624-6511/4/2/44logistic regressioncell sizemultiple lane changescell transmission model
collection DOAJ
language English
format Article
sources DOAJ
author Christina Ng
Susilawati Susilawati
Md Abdus Samad Kamal
Irene Chew Mei Leng
spellingShingle Christina Ng
Susilawati Susilawati
Md Abdus Samad Kamal
Irene Chew Mei Leng
Macroscopic Lane Change Model—A Flexible Event-Tree-Based Approach for the Prediction of Lane Change on Freeway Traffic
Smart Cities
logistic regression
cell size
multiple lane changes
cell transmission model
author_facet Christina Ng
Susilawati Susilawati
Md Abdus Samad Kamal
Irene Chew Mei Leng
author_sort Christina Ng
title Macroscopic Lane Change Model—A Flexible Event-Tree-Based Approach for the Prediction of Lane Change on Freeway Traffic
title_short Macroscopic Lane Change Model—A Flexible Event-Tree-Based Approach for the Prediction of Lane Change on Freeway Traffic
title_full Macroscopic Lane Change Model—A Flexible Event-Tree-Based Approach for the Prediction of Lane Change on Freeway Traffic
title_fullStr Macroscopic Lane Change Model—A Flexible Event-Tree-Based Approach for the Prediction of Lane Change on Freeway Traffic
title_full_unstemmed Macroscopic Lane Change Model—A Flexible Event-Tree-Based Approach for the Prediction of Lane Change on Freeway Traffic
title_sort macroscopic lane change model—a flexible event-tree-based approach for the prediction of lane change on freeway traffic
publisher MDPI AG
series Smart Cities
issn 2624-6511
publishDate 2021-05-01
description Binary logistic regression has been used to estimate the probability of lane change (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula>) in the Cell Transmission Model (CTM). These models remain rigid, as the flexibility to predict <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> for different cell size configurations has not been accounted for. This paper introduces a relaxation method to refine the conventional binary logistic <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> model using an event-tree approach. The <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> probability for increasing cell size and cell length was estimated by expanding the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> probability of a pre-defined model generated from different configurations of speed and density differences. The reliability of the proposed models has been validated with NGSIM trajectory data. The results showed that the models could accurately estimate the probability of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> with a slight difference between the actual <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> and predicted <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> (95% Confidence Interval). Furthermore, a comparison of prediction performance between the proposed model and the actual observations has verified the model’s prediction ability with an accuracy of 0.69 and Area Under Curve (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>U</mi><mi>C</mi></mrow></semantics></math></inline-formula>) value above 0.6. The proposed method was able to accommodate the presence of multiple <i>LC</i>s when cell size changes. This is worthwhile to explore the importance of such consequences in affecting the performance of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>L</mi><mi>C</mi></mrow></semantics></math></inline-formula> prediction in the CTM model.
topic logistic regression
cell size
multiple lane changes
cell transmission model
url https://www.mdpi.com/2624-6511/4/2/44
work_keys_str_mv AT christinang macroscopiclanechangemodelaflexibleeventtreebasedapproachforthepredictionoflanechangeonfreewaytraffic
AT susilawatisusilawati macroscopiclanechangemodelaflexibleeventtreebasedapproachforthepredictionoflanechangeonfreewaytraffic
AT mdabdussamadkamal macroscopiclanechangemodelaflexibleeventtreebasedapproachforthepredictionoflanechangeonfreewaytraffic
AT irenechewmeileng macroscopiclanechangemodelaflexibleeventtreebasedapproachforthepredictionoflanechangeonfreewaytraffic
_version_ 1721413393066229760