Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones

Accurately determining pedestrian location in indoor environments using consumer smartphones is a significant step in the development of ubiquitous localization services. Many different map-matching methods have been combined with pedestrian dead reckoning (PDR) to achieve low-cost and bias-free ped...

Full description

Bibliographic Details
Main Authors: Yan Zhou, Xianwei Zheng, Ruizhi Chen, Hanjiang Xiong, Sheng Guo
Format: Article
Language:English
Published: MDPI AG 2018-01-01
Series:Sensors
Subjects:
PDR
SfM
Online Access:http://www.mdpi.com/1424-8220/18/1/258
id doaj-42d5364fa4514e6a8a652f0413683361
record_format Article
spelling doaj-42d5364fa4514e6a8a652f04136833612020-11-24T23:02:17ZengMDPI AGSensors1424-82202018-01-0118125810.3390/s18010258s18010258Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using SmartphonesYan Zhou0Xianwei Zheng1Ruizhi Chen2Hanjiang Xiong3Sheng Guo4State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, ChinaState Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University, Wuhan 430079, ChinaAccurately determining pedestrian location in indoor environments using consumer smartphones is a significant step in the development of ubiquitous localization services. Many different map-matching methods have been combined with pedestrian dead reckoning (PDR) to achieve low-cost and bias-free pedestrian tracking. However, this works only in areas with dense map constraints and the error accumulates in open areas. In order to achieve reliable localization without map constraints, an improved image-based localization aided pedestrian trajectory estimation method is proposed in this paper. The image-based localization recovers the pose of the camera from the 2D-3D correspondences between the 2D image positions and the 3D points of the scene model, previously reconstructed by a structure-from-motion (SfM) pipeline. This enables us to determine the initial location and eliminate the accumulative error of PDR when an image is successfully registered. However, the image is not always registered since the traditional 2D-to-3D matching rejects more and more correct matches when the scene becomes large. We thus adopt a robust image registration strategy that recovers initially unregistered images by integrating 3D-to-2D search. In the process, the visibility and co-visibility information is adopted to improve the efficiency when searching for the correspondences from both sides. The performance of the proposed method was evaluated through several experiments and the results demonstrate that it can offer highly acceptable pedestrian localization results in long-term tracking, with an error of only 0.56 m, without the need for dedicated infrastructures.http://www.mdpi.com/1424-8220/18/1/258image-based localizationPDRlow-cost indoor localizationSfM
collection DOAJ
language English
format Article
sources DOAJ
author Yan Zhou
Xianwei Zheng
Ruizhi Chen
Hanjiang Xiong
Sheng Guo
spellingShingle Yan Zhou
Xianwei Zheng
Ruizhi Chen
Hanjiang Xiong
Sheng Guo
Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones
Sensors
image-based localization
PDR
low-cost indoor localization
SfM
author_facet Yan Zhou
Xianwei Zheng
Ruizhi Chen
Hanjiang Xiong
Sheng Guo
author_sort Yan Zhou
title Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones
title_short Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones
title_full Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones
title_fullStr Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones
title_full_unstemmed Image-Based Localization Aided Indoor Pedestrian Trajectory Estimation Using Smartphones
title_sort image-based localization aided indoor pedestrian trajectory estimation using smartphones
publisher MDPI AG
series Sensors
issn 1424-8220
publishDate 2018-01-01
description Accurately determining pedestrian location in indoor environments using consumer smartphones is a significant step in the development of ubiquitous localization services. Many different map-matching methods have been combined with pedestrian dead reckoning (PDR) to achieve low-cost and bias-free pedestrian tracking. However, this works only in areas with dense map constraints and the error accumulates in open areas. In order to achieve reliable localization without map constraints, an improved image-based localization aided pedestrian trajectory estimation method is proposed in this paper. The image-based localization recovers the pose of the camera from the 2D-3D correspondences between the 2D image positions and the 3D points of the scene model, previously reconstructed by a structure-from-motion (SfM) pipeline. This enables us to determine the initial location and eliminate the accumulative error of PDR when an image is successfully registered. However, the image is not always registered since the traditional 2D-to-3D matching rejects more and more correct matches when the scene becomes large. We thus adopt a robust image registration strategy that recovers initially unregistered images by integrating 3D-to-2D search. In the process, the visibility and co-visibility information is adopted to improve the efficiency when searching for the correspondences from both sides. The performance of the proposed method was evaluated through several experiments and the results demonstrate that it can offer highly acceptable pedestrian localization results in long-term tracking, with an error of only 0.56 m, without the need for dedicated infrastructures.
topic image-based localization
PDR
low-cost indoor localization
SfM
url http://www.mdpi.com/1424-8220/18/1/258
work_keys_str_mv AT yanzhou imagebasedlocalizationaidedindoorpedestriantrajectoryestimationusingsmartphones
AT xianweizheng imagebasedlocalizationaidedindoorpedestriantrajectoryestimationusingsmartphones
AT ruizhichen imagebasedlocalizationaidedindoorpedestriantrajectoryestimationusingsmartphones
AT hanjiangxiong imagebasedlocalizationaidedindoorpedestriantrajectoryestimationusingsmartphones
AT shengguo imagebasedlocalizationaidedindoorpedestriantrajectoryestimationusingsmartphones
_version_ 1725636761291325440